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Abstract

Image inpainting is a computer vision task that aims to reconstruct an image based on the
visible pixels of a damaged or corrupted image with missing regions. Its applications span across
image processing and computer vision tasks such as photo editing, objective removal and depth
completion. However, significant challenges remain, particularly in remaining the insufficient
information and capturing long-range dependencies for improving the overall fidelity and visual
quality.

We first explore the use of geometric features to guide the insufficient visual feature for
improving the fidelity of facial image inpainting, and the feasibility of using image inpainting for
cleft lip surgery to support surgeons as adjuncts to adjust surgical technique and improve surgical
results. To achieve this idea, we collect two real-world cleft lip datasets to conduct experiments
with a proposed single-stage multi-task image inpainting framework that is capable of covering a
cleft lip and generating a lip and nose without a cleft. The results are assessed by expert cleft lip
surgeons to demonstrate the feasibility of the proposed methods. Additionally, we embed this
framework as software and released it on CodeOcean and Github, to make it convenient and
equal to use for both patients and surgeons.

Although insufficient information can be provided and supplemented by landmark points,
such approach only works for facial image inpainting and cannot be transferred to natural or
architectural scenes, which are more common in the real-world senario. To more effectively use
information while more adaptively maintaining fidelity, we propose an end-to-end High-quality
INpainting Transformer, abbreviated as HINT, which consists of a novel Mask-aware Pixel-shuffle
Downsampling (MPD) module to preserve the visible information extracted from the corrupted
image while maintaining the integrity of the information available for high-level inference made
within the model. Moreover, we propose a Spatially-activated Channel Attention Layer (SCAL),
an efficient self-attention mechanism interpreting spatial awareness to model the corrupted
image at multiple scales. To further enhance the effectiveness of SCAL, motivated by recent
advanced in speech recognition, we introduce a sandwich structure that places feed-forward
networks before and after the SCAL module. We demonstrate the superior performance of HINT
compared to contemporary state-of-the-art models on four datasets, CelebA, CelebA-HQ, Places2,
and Dunhuang.

Furthermore, capturing global contextual understanding is a crucial challenge to restore
missing regions of images with semantically coherent content. Recent advancements have
incorporated transformers, leveraging their ability to understand global interactions. However,
these methods face computational inefficiencies and struggle to maintain fine-grained details.
To overcome these challenges, we introduce M × T composed of the proposed Hybrid Module
(HM), which combines Mamba with the transformer in a synergistic manner. Selective State Space
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Model (SSM), known as Mamba, is adept at efficiently processing long sequences with linear
computational costs, making it an ideal complement to the transformer for handling long-scale
data interactions. However, such method method of directly adopting the vanilla SSM does not
solve the inherent limitation of SSM unidirectional scanning the data, making it lack 2D spatial
awareness. This insight introduces two key challenges: (i) how to maintain the continuity and
consistency of pixel adjacency for pixel-level dependencies learning while processing the SSM
recurrence; and (ii) how to effectively integrate 2D spatial awareness to the predominant linear
recurrent-based SSMs. To solve these challenges, we spatially enhance the SSM to propose SEM-
Net with efficient pixel modelling for image inpainting, involving the Snake Mamba Block (SMB)
and Spatially-Enhanced Feedforward Network. These innovations enable SEM-Net to outperform
state-of-the-art inpainting methods in capturing long-range dependency and enhancement in
spatial consistency.

We validate the effectiveness of our methods through extensive experiments and qualitative
analysis. Our approaches surpass the state-of-the-art (SoTA) in Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM), Perceptual Similarity (LPIPS), L1, and Fréchet Inception Distance
(FID). All contributions have been accepted by peer-reviewed conferences or journals.
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CHAPTER 1

Introduction

Image inpainting, also called image completion, has been greatly benefited by modern

learning-based techniques [2, 13–20], even though it has been a focus of study with

traditional methods long before the rise of deep learning [21–23]. Unlike traditional

methods, which rely on replicating nearby patches or filling minor scratches, learning-

based approaches leverage deep networks to understand global semantics and structure,

allowing them to generate visually coherent and contextually accurate completions even

for complex and large missing regions. While these methods represent a significant

improvement in terms of flexibility and performance, limitations remain, particularly

in “effectively utilising insufficient contextual information” and “capturing long-range

dependencies”. To address these limitations, we explore tailor-made fundamental tech-

niques specifically designed for image inpainting, focusing on enhancing representation

learning and spatial awareness. Improved representation learning allows the model to

better interpret and utilise insufficient contextual information, while heightened spatial

awareness ensures greater spatial consistency, enabling the generation of structurally

coherent results with less artifacts. By combining these advancements, our approach

aims to significantly improve the overall quality of inpainted images, producing outputs

that are both semantically accurate and visually seamless.
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1.1. Motivations

1.1 Motivations

Image inpainting aims to reconstruct a complete image from a corrupted one, which

inherently contains insufficient information. As the masked region becomes larger, the

consistency of structure and context is increasingly lost, making it more difficult to

produce coherent results. Additionally, the missing regions disrupt both local and global

relationships within the image, hindering the model’s ability to perceive long-distance

dependencies. This often leads to inconsistencies in patterns or features across different

parts of the image.

Our motivation primarily comes from two perspectives: effectively using insuffi-

cient information and capturing long-range dependency. Enhancements in these

two perspectives can significantly improve the overall performance of image inpainting

tasks.

1.1.1 Motivations for Effectively Using Insufficient Information

A significant challenge hindering image inpainting is effectively modeling the valid infor-

mation within visible regions, which is crucial for reconstructing semantically coherent

and texture-consistent details in the missing regions. This is particularly noticeable in

large masked regions, where the valid information is limited. Such challenge often results

in suboptimal outcomes, such as implausible facial attributes in facial image inpainting

or inconsistent structural details in building scenarios, highlighting the need for more

robust solutions. Existing methods that utilise convolutional layers for downsampling

come with the inherent drawback of information loss [24], attributed to the reduction

of feature size from filters and downsampling. Given its capability to preserve input

information, pixel-shuffle down-sample is widely used in image denoising [25], image

deraining [26] and image super-resolution [27]. It periodically rearranges the elements of

the input into an output scaled by the sample stride. However, its effectiveness depends

on the assumption that the sample stride is small enough to avoid disrupting the noise

distribution [28]. This holds only for a relatively independent distribution of raindrops

and noise, and is not suitable for image inpainting with irregular and variable-size masks.

Implying that directly applying conventional Pixel-shuffle Down-sampling (PD) [25–27]
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Chapter 1. Introduction

to a corrupted image induces a Pixel Drifting effect, as illustrated in Fig. 4.2 (upper branch).

In our observation, after PD the features within the hole regions become misaligned with

their pre-downsampling counterparts, manifesting as spatial discontinuities across the

downsampled feature maps. This drift stems from the periodic spatial-to-channel rear-

rangement, which mixes valid and corrupted neighborhoods and breaks local continuity

around mask boundaries. After the feature is downsampled, the position of the masked

regions becomes inconsistent across channels, causing the visible area to be misaligned

in the channel, disrupting subsequent feature extraction processes within the model, thus

affecting the accurate modelling of the valid information from the visible regions of the

input image.

To effectively utilise the limited information from such corrupted images, first, we

propose a specific facial image inpainting architecture which is also able to predict

the landmark points to identify the facial attributes. We involve landmark prediction

to partially guide masked images, resulting in a more precise geometry indicator for

repairing facial attributes. Furthermore, to solve this problem in a more generalised

manner, we propose a novel High-quality INpainting Transformer (HINT), with a tailor-

made mask-aware pixel-shuffle down-sampling strategy, specifically designed for image

inpainting, enabling efficient multiscale modelling of the global context while minimising

the loss of valid information.

1.1.2 Motivations for Capturing Long-range Dependency

Convolutional Neural Networks (CNNs) are widely used as backbone networks in image

inpainting due to their strong performance in learning generalisable representations

from images and their effective mining of short-range dependencies through convolution

operations [29–32]. However, their slow-grown receptive field constrains the perception

of the global context and hampers the ability to capture long-range dependencies within

the image. This limitation is particularly problematic for low-level vision tasks like image

inpainting, where single-pixel reconstruction must preserve pixel consistency while

accounting for dependencies over larger distances. To address this limitation, researchers

have shifted towards transformer-based architectures [8, 33] to better capture the long-

range dependencies (LRDs) and global structure. However, transformer-based methods
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suffer from quadratic computational complexity, which restricts their ability to learn

spatial LRDs only at the patch level rather than the pixel level. [10] attempts to model

images at the pixel level with transformer, but it focuses on semantic features rather than

spatial relations, which means it still lacks the ability to effectively capture spatial LRDs.

Mamba [34], emerging from the domain of long-sequence modelling, offers promising

advantages for handling long sequential data and capturing long-range dependency

efficiently, all at a linear computational cost. This capability makes Mamba particu-

larly suitable for globally learning interactions at the pixel level, thus complementing

transformers by adding detailed context.

We observe that, Mamba and transformer exhibit complementary strengths: Mamba is

good at learning long-range pixel-wise dependency, which is computationally expensive

for the transformer. Conversely, transformer is good at capturing global interactions

between localized patches, such spatial awareness is an area that Mamba lacks due to it

being designed for sequence modelling. Based on this observation, we proposeM × T ,

an architecture of mixture of Mamba and Transformer, consisting of proposed Hybrid

Modules that synergistically combine the strengths of both transformer and Mamba. This

novel approach allows for dual-level interaction learning from the patch level and pixel

level.

However, as the vanilla SSM scans the data as a sequence with a single fixed direction,

it lacks 2D spatial awareness, making theway tomodel pixels in SSM crucial. As illustrated

in Sample II of Fig. 5.1, a vanilla SSM model [9] shows positional drifting of the inpainted

left eye (upper than the right eye). This insight introduces two key challenges: (i) how to

maintain the continuity and consistency of pixel adjacency for pixel-level dependencies

learning while processing the SSM recurrence; and (ii) how to effectively integrate 2D

spatial awareness to the predominant linear recurrent-based SSMs.

To further solve that, we propose SEM-Net: Spatially-Enhanced SSM Network for

image inpainting, which is a simple yet effective encoder-decoder architecture. Both

M × T and SEM-Net are evaluated on the widely-used CelebA-HQ and Places2-standard

datasets, and overall outperform than existing state-of-the-art methods.
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1.2 Problem Definitions

Formally, the problem is formulated as follows: given the original image I and MaskM ,

the input image Iinput, is obtained by concatenating masked image IM = I ⊙M , and

the mask M , where ⊙ is element-else multiplication. The input image, Iinput, is then

processed by the inpainting model and a semantically accurate output image, IC , will

be generated. The whole formulation is denoted as: IC = f(Iinput), f is the inpainting

model.

1.3 Research Aims

Asmentioned above, how to effectively use insufficient information from corrupted

data and how to capture long-range dependency are two critical perspectives to

improve the quality of image inpainting, such that the inpainted images can provide more

accurate and comprehensive context. Our research is driven by the following objectives:

1. Effectively using Insufficient Data:

• Geometric Feature Adjunction: To more effectively use the information

that remains in the corrupted images, we aim to develop an advanced multi-

task framework to integrate the related geometric feature for image inpainting

to guide the feature understanding, and explicitly complement the information

that potentially missing in the representation learning.

• Avoiding Information Loss: Most existing image-inpainting methods per-

form down-sampling via strided convolutions. However, convolutional down-

sampling inherently filters each neighbourhood with a limited kernel and

then sparsely samples the result, effectively a low-pass-plus-decimation op-

eration that discards or aliases high-frequency details and disrupts depen-

dencies across windows. To solve the information loss that happens in the

convolutional-based down-sampling in existing methods. By exploring the

optimal down-sampling method, and tailor-made tuning it to be adaptive to

image inpainting, we aim to develop an advanced downsampling strategy,
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enabling whole information to remain while reducing the resolution in image

inpainting task.

2. Long-range Dependency: There are multiple ways to improve the long-range

dependency, the critical challenge is the way to improve the long-range dependency

while with a low computational cost.

• Long-range Pixel-wise Dependency: We observe that Mamba is good at

learning long-range pixel-wise dependency, which is computationally expen-

sive for the transformer. By combining Mamba with the transformer, we aim

to build a model for dual-level interaction learning from the patch level and

pixel level to capture the long-range dependency.

• Enhancing Mamba for Image Inpainting: To overcome the limitations

of vanilla Mamba, which lacks 2D spatial awareness, we plan to extend it

to capture both short- and long-range spatial dependencies efficiently, with

linear computational cost.

Overall, our research advances image inpainting by addressing insufficient informa-

tion and long-range dependency. To tackle insufficient data, we propose integrating

geometric features to complement missing information and developing an adaptive down-

sampling strategy to prevent information loss. For long-range dependency, we introduce

two methods: combining Mamba with transformers to leverage dual-level interactions at

pixel and patch levels, and enhancing Mamba alone to efficiently capture both short- and

long-range dependencies with improved spatial awareness. These innovations contribute

to the more effective image inpainting models.

1.4 Contributions

The main contributions of this thesis are summarised as follows:

• A novel facial image inpainting architecture, to produce a non-cleft lip image

from patients with cleft lips. We design adaptive feature fusion and landmark

indicators to boost parameter sharing and utilise the second task more efficiently.
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The landmark prediction is guided by both masked image and partial inpainted

information, resulting in a more precise geometry indicator for repairing facial

attributes.

• A novel end-to-end transformer-based architecture HINT for image inpainting,

taking advantage of multi-scale feature- and spatial-level representations as well as

pixel-level visual information. We propose a plug-and-play down-sampling module

to preserve useful information while keeping irregular masks consistent during

downsampling. Comparative experiments show that HINT outperforms SOTA

image inpainting approaches across four datasets, CelebA [35], CelebA-HQ [4],

Places2 [5] and Dunhuang challenge [36].

• Two novel Mamba-based architecture, M × T and SEM are proposed to learn

the global and local representation while keeping a relatively low computational

cost. M × T enables dual-level interaction learning, capturing both pixel-level

and patch-level dependencies for enhanced global and local context modelling.

SEM-Net further innovates with Snake Mamba Blocks, incorporating a Snake Bi-

Directional Modelling module for spatial consistency and a Spatially-Enhanced

Feedforward Network to refine local spatial dependencies. These architectures

effectively balance computational efficiency and spatial awareness, enabling them

to handle high-resolution image inpainting.

1.5 Publications

The research related to this thesis has been previously published in the following peer-

reviewed publications:

• Shuang Chen, Amir Atapour-Abarghouei, Jane Kerby, Edmond S. L. Ho, David

C. G. Sainsbury, Sophie Butterworth, Hubert P. H. Shum, “A Feasibility Study on

Image Inpainting for Non-cleft Lip Generation from Patients with Cleft Lip.” In

International Conference on Biomedical and Health Informatics (BHI). IEEE, 2022.

(Chapter 3)
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• Shuang Chen, Amir Atapour-Abarghouei, Edmond S. L. Ho, Hubert P. H. Shum,

“INCLG: Inpainting for Non-Cleft Lip Generation with a Multi-Task Image Process-

ing Network.” In Software Impacts (SIMPAC). ELSEVIER, 2023.

(Chapter 3)

• ShuangChen, Amir Atapour-Abarghouei, Hubert P. H. Shum, “HINT: High-quality

INpainting Transformer with Mask-Aware Encoding and Enhanced Attention.” In

IEEE Transactions on Multimedia (TMM). IEEE, 2024.

(Chapter 4)

• Shuang Chen, Amir Atapour-Abarghouei, Haozheng Zhang, Hubert P. H. Shum,

“MxT: Mamba x Transformer for Image Inpainting.” In the 2024 British Machine

Vision Conference (BMVC), 2024.

(Chapter 5)

• Shuang Chen, Haozheng Zhang, Amir Atapour-Abarghouei, Hubert P. H. Shum,

“SEM-Net: Efficient Pixel Modelling for Image Inpainting with Spatially Enhanced

SSM.” In the Winter Conference on Applications of Computer Vision (WACV), 2025.

(Chapter 5)

1.6 Thesis Structure

This thesis is structured to systematically explore and present the advancements in deep

learning for image inpainting using advancing representation learning and generative

model. The organisation of the chapters is designed to take the reader through the

motivation, literature, methodology, and findings of the research coherently and logically.

In Chapter 1, we first introduce the our motivation for “effectively using insuffi-

cient information” and “capturing long-range dependency” in image inpainting,

reveal the significant challenge that existing methods struggling. These challenges are

particularly evident in scenarios with large masked regions, where local and global rela-

tions are disrupted, leading to inconsistencies in structure and texture. To address these

challenges, the chapter outlines the research aims, which include developing methodolo-

gies to preserve valid information, enhance geometric feature adjunction, and prevent
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information loss during down-sampling. Additionally, it emphasises the need for mod-

elling long-range dependencies efficiently through dual-level interaction learning and

extending Mamba to capture spatial dependencies effectively. This chapter also defines

the image inpainting problem, presenting a formal mathematical formulation. After that,

we propose the aims that we are targeting to solve in this research, followed by the

contributions bullet points and a list of peer-reviewed publications.

Chapter 2 provides an overview of the evolution of image inpainting, starting with

traditional approaches, which focus on neighbouring pixel information or external patches

to complete missing regions. Then we discuss the learning-based methods, highlighting

their success in generating contextually coherent content for large missing regions. This

section also explores advances in convolutional and GAN-based architectures, including

innovations like partial and gated convolutions, contextual attention mechanisms, and

multi-scale patch matching strategies. These developments underscore the ongoing

efforts to extract valid information from known regions, while addressing challenges

such as enlarging receptive field while saving the computational cost.

In Chapter 3, we validate the feasibility of applying a novel generative image in-

painting model to generate non-cleft lip images from cleft lip images, while presenting

the system design and implementation details of the proposed framework. This section

outlines a multi-task architecture, which integrates facial landmark prediction and image

inpainting to enhance parameter sharing and feature interaction. It describes the use

of gated convolution layers for efficient inpainting and adaptive fusion mechanisms to

refine feature maps. Additionally, the section highlights the data preparation process,

including the open facial datasets and the ethical considerations for the steps taken to

collect and validate real patient data for testing.

After focusing on facial inpainting, where strong domain priors (e.g., landmarks,

facial symmetry, identity cues) can be explicitly leveraged for structure and identity

consistency—these assumptions do not generalize to open-world scenes, we move on

to the General-scene inpainting, which must cope with diverse layouts, noncanonical

objects, and high-frequency textures without reliable semantic anchors. Building on the

insights from the facial setting, we retain the core principles of information-preserving

down-sampling, mask-aware feature routing, and long-range context aggregation, but we
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recast them into category-agnostic modules. Differences are shown in Tab. 1.1. Chapter 4

therefore relaxes identity-specific conditioning and replaces face-centric supervision

with self-consistent structural and textural cues, enabling our method to scale beyond

faces and deliver robust completion on unconstrained images.

In Chapter 4, we present the High-quality INpainting Transformer (HINT), a novel

transformer-based architecture designed to address the challenges of image inpainting.

This section provides a detailed explanation of the mask-aware pixel-shuffle down-

sampling strategy employed to minimise information loss and preserve the consistency

of visible and masked regions. Comprehensive evaluations are conducted on multiple

benchmarks, including CelebA-HQ and Places2, to highlight HINT’s effectiveness

In Chapter 5, the focus shifts to the integration of Mamba-based architectures for

improving long-range dependency modelling in image inpainting. We introduce two

Mamba-based architecture,M×T and SEM,M×T combines the strengths of Mamba and

transformers for dual-level interaction learning, capturing both pixel-level and patch-level

dependencies. Additionally, we propose SEM-Net, a spatially-enhanced architecture that

incorporates Snake Mamba Blocks (SMBs) to enhance spatial consistency and long-range

dependency modelling. Detailed experimental setups, evaluations, and ablation studies

are presented to demonstrate the superior performance and efficiency of these methods.

In Chapter 6, we conclude by reviewing the main contributions of this thesis, high-

lighting the innovative solutions proposed to address the challenges of “effectively using

insufficient information” and “capturing long-range dependency”. These include

the development of the advanced frameworks for non-cleft lip generation, transformer-

based architecture and Mamba-based architecture. Additionally, we outline the potential

future directions, emphasising key areas for further advancements and innovations to

enhance the field of image inpainting.
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CHAPTER 2

Literature Review

This chapter surveys the literature that underpins our subsequent contributions, moving

from foundations to the most recent advances. We begin by outlining the two princi-

pal families of modern generative models—GANs and diffusion models—and how their

objectives, strengths, and weaknesses relate to inpainting (Section 2.1). We then revisit

pre–deep learning inpainting to clarify the historical assumptions and limitations of

exemplar- and diffusion-based techniques (Section 2.2). Next, we review convolutional

approaches, including partial/gated convolutions and attention-augmented CNNs that

improve local texture synthesis while struggling with long-range dependencies (Section

2.3). Building on this, we introduce visual transformers, covering tokenisation and self-

attention in vision (Section 2.4), and summarize transformer-based inpainting methods

that address global context at varying computational costs (Section 2.5). Finally, we

discuss State Space Models—especially Mamba—and their emerging role in efficient long-

sequence modelling for vision (Section 2.6). We close with datasets and metrics commonly

used to evaluate inpainting quality (Section 2.7), establishing consistent ground for the

experiments in later chapters.
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2.1 Generative Models

Generative models are a class of machine learning models that learn the underlying

probability distribution of a dataset in order to generate new samples that resemble the

original data [40, 41]. In contrast to discriminative models that predict labels or targets,

generative models aim to model the data distribution itself, capturing the essential struc-

ture and variability in an unsupervised manner. By learning a good approximation of the

data-generating process, these models can synthesize novel examples to produce realistic

images, plausible text, or coherent audio. Over the past decade, rapid advances in deep

learning have led to powerful generative modeling frameworks, including variational

autoencoders (VAEs) [42], generative adversarial networks (GANs) [43], autoregressive

models [44, 45], and diffusion models [46], among others. Each framework embodies

different theoretical principles and trade-offs in how it learns data distributions, reflecting

the evolution of the field and the pursuit of more expressive, stable, and high-fidelity

generative systems. In this research, we only focus on GANs and diffusion-based methods,

which are widely used in image inpainting task. These approaches have demonstrated

superior performance in generating visually coherent and semantically consistent con-

tent, making them particularly well-suited and empirically validated as state-of-the-art

methods for image inpainting compared to other generative frameworks, such as VAEs

or autoregressive models.

Generative models can be broadly categorised by how they learn and represent the

data distribution. One useful distinction is between explicit density models and implicit

density models. Explicit models define a probability distribution for data (often enabling

likelihood estimation) and are typically trained by maximising likelihood or a surrogate

objective. Diffusion models represent a unique class of Explicit models, as they explicitly

define a probability distribution over the data. Implicit models, on the other hand, do not

directly specify a probability density. Instead, they learn to generate samples that match

the data distribution without computing explicit likelihoods. GANs are the quintessential

implicit generative models: rather than maximise a likelihood, GANs train a generator

network to produce data that a discriminator network cannot distinguish from real data,

thereby implicitly learning the target distribution.
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2.1.1 Generative Adversarial Networks (GANs)

[43] introduces Generative Adversarial Networks (GANs), which take a very different

approach to generative modelling by casting it as a two-player minimax game. In a

GAN, there are two neural networks contesting with each other: a generator G that tries

to produce realistic data (e.g., images) from random noise, and a discriminator D that

examines data and attempts to distinguish real samples (from the training set) from fake

samples produced byG. The generator and discriminator are trained simultaneously with

opposing objectives: D is optimised to correctly classify inputs as real or fake, while G is

optimised to foolD. Such that, GANs are to maximise the probability thatD misclassifies

the generated output as real. Formally, this setup corresponds to the following minimax

game:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)
[
log

(
1−D(G(z))

)]
. (2.1)

At the theoretical equilibrium of this game, the generator G would exactly reproduce the

training data distribution and the discriminator would be unable to tell real from fake.

In practice, although perfect equilibrium is seldom achieved, this adversarial learning

process has shown remarkable ability for the generator to learn complex data distributions

implicitly, without ever explicitly computing a likelihood or distance measure between

distributions.

The fundamental principle of GANs is this adversarial training dynamic, which

differs from likelihood-based training in that it uses a learned discriminator to drive the

improvements of the generator. One intuition is that the discriminator is learning an

adaptive loss function: rather than a fixed pixel-wise loss, it learns which differences

between real and generated data are important and guides the generator to fix those. This

often leads GANs to produce visually sharper andmore realistic outputs than VAEs [47,48],

since G is trained to focus on realism and fine details that fool D, rather than to average

over possible outputs. Indeed, GANs have been credited with redefining the state-of-the-

art in realistic image generation, producing photographs of people, objects, and scenes

that are often indistinguishable from real images to human observers. Over the past ten

years, GANs and their variants (DCGAN [49], WGAN [50], StyleGAN [51], BigGAN [52],
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etc.) have dominated many image synthesis benchmarks, demonstrating the ability to

capture high-frequency details and complex textures in a way earlier likelihood-based

models struggled to match.

However, GANs come with their own set of challenges and characteristics. Training

GANs can be unstable due to the delicate balance required between the generator and

discriminator. If one network overpowers the other, the adversarial loss can converge

very soon. Considerable research has gone into techniques to stabilise GAN training,

such as using alternative loss functions or architectural constraints and regularisation.

For example Wasserstein distance with gradient penalty in WGAN to address gradient

vanishing. Even with these improvements, mode collapse is a well-documented issue,

which means the generator may find it easier to produce a limited variety of outputs that

consistently fool the discriminator, resulting in lack of diversity. This happens because

nothing in the standard GAN objective explicitly forces G to cover all modes; it only

needs to generate something in each minibatch that can fool D.

Despite being implicit models, GANs demonstrate that adversarial training can yield

latent representations that capture meaningful factors of variation. The discriminator

learns to encode high-level representations of the data, which are usually related to

the semantic content, to tell if an image looks real. Additionally, some GAN variants

introduce an encoder or use techniques like bi-directional GANs to map data into the

latent space of the generator, effectively adding an inference mechanism to GANs for

representation learning. In terms of practical downstream use, GAN-based models have

been applied to tasks such as image inpainting, where the generator is tasked with

filling in missing regions of an image in a realistic way. By training on large image

datasets, a GAN can learn to plausibly imagine the missing content consistent with the

surrounding context. For example, if part of an image of a face is masked out, a GAN

trained on faces can generate a plausible guess of the missing part (eyes, nose, etc.) that

looks coherent. Early works showed that incorporating adversarial loss in inpainting

(besides a reconstruction loss) yields much sharper and more realistic filled regions. This

underscores how generative modeling advances have enabled new capabilities in image

restoration and reconstruction.
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2.1.2 Diffusion Models

The fundamental idea of diffusion models is to train a model to reverse a gradual noising

process. Diffusion models represent the latest wave of innovation in deep generative

modelling. The concept of diffusion-based generation originates from nonequilibrium

thermodynamics and was first explored in the context of deep learning [53], but only

recently have diffusion models demonstrated state-of-the-art results in generating high-

quality images and other data [54]. In a typical diffusion model, a forward diffusion

process is defined wherein data x0 is progressively corrupted by noise through a sequence

of T small steps, eventually yielding a sample of pure noise xT , which is usually from

Gaussian noise. This forward process is a fixed Markov chain that ensures by the final

step the original structure in the data is almost entirely destroyed. The generative model

works by learning a reverse diffusion process. In this process, a neural network is trained

to denoise. It predicts the distribution of xt−1 from a noisy xt at each step. The model

starts with random noise xT and gradually refines it. By applying these denoising steps

in sequence, it produces a coherent sample x0 that resembles real data [55, 56].

The training of diffusion models typically uses variational inference or score matching.

One common approach trains the denoising network to predict either the original data

x0 or the added noise from a partially noised input xt at various noise levels [55]. This

minimizes a weighted sum of reconstruction losses over all timesteps and can be shown

to maximize a variational lower bound on the data likelihood. An alternative perspective

is that the model learns the score function of the noisy data distribution at each noise

level [56]. It then uses Langevin-like sampling to generate data, linking diffusion models

to energy-based models and score matching. Since each step involves only a small

denoising task rather than generating an image from scratch, the training is more stable.

There is no adversarial objective, and each denoising step is trained with a simple loss

(typically an L2 loss on the noise prediction). This stability helps diffusion models avoid

issues like mode collapse that can affect GANs [57].

However, a key drawback of diffusion models is their computational complexity [58,

59]. Generating a single sample requires iterating through hundreds or even thousand

denoising steps, each of which involves a forward pass through a large neural network.

As a result, producing a batch of samples is considerably more computationally intensive
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compared to one-shot generative models [59]. To address these challenges, researchers

are exploring several acceleration techniques. These include reducing the number of

timesteps with noise-aware sampling [60], and employing distillation methods to skip

intermediate steps [61]. Another issue is that diffusion models typically operate in pixel

space or in a high-dimensional latent space, which can be inefficient. Recent advances such

as latent diffusion [62] mitigate this by compressing images into a lower-dimensional

latent space using an autoencoder before applying diffusion. In terms of evaluation,

diffusion models do permit likelihood estimation but computing the exact likelihood is

not as straightforward as in autoregressive or flow models. Nonetheless, the field has

largely embraced diffusion models for their empirical performance. Nevertheless, the

inference speed of the diffusion model is still a shortcoming that limits its widespread

application in downstream tasks [58], such as large-area image restoration tasks [63].

2.2 Non-Deep Learning Image Inpainting

Image inpainting predates learning-based techniques and the literature on image com-

pletion based on conventional strategies is extensive. Traditional approaches (non-deep

learning methods) complete minor and narrow stretches using neighbouring visible

pixels [21], these methods fill in missing or damaged regions by copying pixels from

other parts of the same image or from a database of external images. Exemplar-based

methods infer missing regions with plausible edge information based on other patches

from background or external data [22, 23], these methods involve searching for the most

similar patches to the missing region’s boundary and using them to fill in the missing

regions. This process often involves iteratively searching for best-matching patches and

blending them seamlessly into the missing regions. Such methods are generally effective

for reconstructing images with small and constrained missing regions as they are able to

produce visually plausible results by leveraging existing textures and patterns. However,

a key limitation is that, these methods are unable to generate novel features or content

that is not present in the source images or database. Therefore, they struggle to pro-

duce satisfactory results while dealing with large missing regions requiring imaginative

reconstruction.
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2.3 Convolution-based Image Inpainting

Compared with traditional methods, learning-based methods have achieved great success

in inpainting, especially when it comes to generating new contextually sound content for

large missing regions. [13] proposed a parametric framework for image inpainting based

on an encoder-decoder architecture taking advantage of a Generative Adversarial Network

(GAN) [43]. Subsequently, numerous GAN-based methods emerged to offer improved

inpainting quality [2, 15–17, 32, 38, 64–66] using better training strategies. [14] use two

discriminators to calculate both global and local adversarial losses. [29] propose region-

wise normalisation for missing and visible areas. Partial [15] and gated convolutions

[16, 17] are introduced to handle the irregular masks by improving the convolution

operation [32, 64] to efficiently extract valid information for inpainting. [18] propose

contextual attention to facilitate the matching of feature patches across distant spatial

locations. Building on this, [2, 19] extended [18] by incorporating a multi-scale patch

size to further improve its efficiency. [67] introduces fourier convolution-based encoder

for image inpainting to avoid generating invalid features inside the missing regions.

Despite the advancements, a persistent challenge in learning-based inpainting meth-

ods is the information loss caused by convolutional downsampling, particularly for those

methods that rely on convolutional networks. This information loss can suppress the

generation of fine-grained details and texture in the inpainted regions. In addition, these

convolution-based methods struggle with the slow expansion of the receptive field, which

limites their ability to model complex long-range dependencies.

2.4 Visual Transformer

Transformers [68] have revolutionised natural language processing with their self-

attention mechanism and have recently gained prominence in computer vision applica-

tions [69,70]. Unlike convolutional networks, transformers excel in capturing long-range

dependencies due to their global receptive field. This property makes them highly suitable

for tasks requiring the modelling of extensive contextual relationships, such as image

inpainting [8, 71–75].
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2.4.1 Embedding an Image into Tokens

To process an image with transformers, it must first be converted into a sequence of

tokens. This can be achieved through two main approaches: extracting patches or using

overlap convolution.

Patch Extraction and Projection

Given an image I ∈ RH×W ×C , whereH,W andC represent the height, width and number

of channels, respectively, is divided into non-overlapping patches of size P × P . Each

patch is flattened into a 1D vector of size P 2 · C and then projected into a d-dimensional

token embedding using a linear layer:

Ti = Linear(xi), ∀i ∈ [1, N ], (2.2)

where xi ∈ RP 2·C represents the i-th patch, andN = H×W
P 2 is the total number of patches.

Since this approach disrupts the spatial relations between patches, positional encodings

are added to the tokens to retain the spatial structure:

Zi = Ti + PEi, ∀i ∈ [1, N ], (2.3)

where PEi ∈ Rd represents the positional encoding for the i-th patch.

Overlap Convolution and Projection

Another approach embeds the image using overlapped convolutions, which preserve

spatial relationships inherently. For an image I , overlapped convolution generates feature

maps that embed local spatial information directly. These feature maps are then projected

into token embeddings:

Ti = Linear(Conv(xi)), ∀i ∈ [1, N ], (2.4)

where Conv represents the overlapped convolution operation. Unlike the patch-based

approach, positional encoding is unnecessary, as the convolution operation already

incorporates positional information into the embeddings.
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Both methods result in a sequence of tokens, which serve as input to the transformer.

The choice between thesemethods depends on the specific requirements of the application.

In our research, we use overlapped convolution to embed the tokens to provide more

comprehensive spatial information.

2.4.2 The Self-Attention Mechanism in Vision

The core of the transformer is the self-attention mechanism, which computes the rela-

tionship between input tokens. Given an input sequence of features X ∈ RN×d, the the

scaled dot-product attention is calculated as:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (2.5)

where: Q = XWQ is the query matrix, K = XWK is the key matrix, V = XWV is

the value matrix, d is the dimension of the query and key. Here,WQ,WK , andWV are

learnable projection matrices. This formulation allows the model to attend to all positions

in the input simultaneously, enabling the extraction of global contextual information.

While transformer is able to handle global relations, the quadratic complexityO(N2d)

of self-attention poses a computational bottleneck for high-resolution images.

2.5 Visual Transformers for Image Inpainting

The notable success of Transformers [68] in natural language processing has recently

prompted research into their applicability in computer vision [69, 70]. Driven by this,

efforts were focused towards applying transformers to image inpainting [8, 71–75].

However, spatial-based self-attention incurs an expensive computational cost. To reduce

computation, [71, 72] down-sample the input image into a lower resolution. [8, 73, 75]

calculate the spatial self-attention after encoding the input image into low-resolution

features. Nonetheless, these approaches fail to change the quadratic complexity of spatial

self-attention, which restricts its applicability to high-frequency features.

The Swin Transformer [70] mitigates this issue by introducing a hierarchical structure

and shiftedwindow-based attention. The computational complexity is reduced to linearity,
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as attention is calculated within non-overlapping windows. For an input image of size

H ×W with a window size ofM ×M , the complexity is reduced to:

O
(
HW

M2 ·M
2d
)

= O(HWd), (2.6)

where H,W represent the height and width of the image, respectively. However, the

shifted-window design splits the local neighbourhood context of the visible and missing

area, and thus is not ideally suited for inpainting. [10] propose utilising channel-wise self-

attention in multi-scale representation with linear complexity for image reconstruction.

Its variant [6] demonstrates the applicability in image inpainting. Nevertheless, both of

these models omit spatial attention that is vital in delivering high-quality and contextually

sound results. In contrast, our model integrates multiscale channel and spatial attention in

an efficient manner, thus resolving the issue that prior work has struggled with [8,72,73].

2.6 State Space Models and Mamba

2.6.1 Preliminary

State Space Models (SSMs) are a foundational framework in systems theory, widely used

for modelling linear time-invariant systems. In their essence, SSMs describe the evolution

of a system’s hidden state over time and its relationship with input and output sequences.

Specifically, an input sequence x(t) ∈ R is mapped to an output response y(t) ∈ R via a

hidden latent state h(t) ∈ RN . The state-space representation is given by:

h′(t) = Ah(t) + Bx(t) , y(t) = Ch(t) , , (2.7)

where A ∈ RN×N represent the system dynamics, B ∈ RN×1 defines how the input

sequence influences the state, and C ∈ R1×N maps the hidden state to the output

sequence.
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2.6.2 Zero-Order Hold Discretisation

For modern deep learning applications, it is essential to implement SSMs in discrete time,

which requires converting the continuous-time parameters (∆,A,B)into discrete-time

equivalents (A,B), A widely used method for discretization is the zero-order hold rule,

which approximates the continuous system by assuming the input remains constant

within each time step. The discrete parameters are computed as:

A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B, (2.8)

where ∆ represents the time scale, the exp ∆A is the matrix exponential of ∆A.

The resulting discrete state-space equations are expressed as:

ht = Aht−1 + Bxt , yt = Cht . (2.9)

2.6.3 Selective State Space Models and Mamba

The structured nature of traditional SSMs makes them computationally efficient but

often limits their ability to adapt to dynamic and complex input-output relationships. To

address this limitation, recent advancements have introduced selective mechanisms into

SSMs, enabling them to reason more effectively about content and context.

Mamba [34], one of the most recent selective SSMs, innovates upon traditional models

by introducing a gated selective mechanism. This mechanism allows the model to

dynamically propagate or eliminate specific information based on the current system

state. The key innovation of Mamba lies in its shift from time-invariant to time-varying

parameters, enabling it to adapt to varying inputs.

Specifically, Mamba redefines the parameters (∆, B, C) as input-dependent functions.

Let xt denote the input at time t. Then, Mamba introduces functions ∆(xt), B(xt), and

C(xt) that dynamically adjust the model’s behaviour based on the current input:

∆(xt) = σ(W∆xt + b∆), B(xt) = σ(WBxt + bB), C(xt) = σ(WCxt + bC), (2.10)

where σ() is a nonlinear activation function,W∆,WB ,WC are learnable weight matri-
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ces. This dynamic adjustment improves the model’s ability to handle complex temporal

dependencies and enhances its performance in content-reasoning tasks. Mamba has

demonstrated significant improvements in tasks requiring precise, context-aware tempo-

ral modelling, making it a powerful tool for sequential data analysis.

2.6.4 SSMs in Computer Vision

Recently, State Space Models (SSMs) have demonstrated promising advantages of long se-

quence modelling and linear-time complexity in Natural Language Processing (NLP) [76].

This work specifically tackles the problem of vanishing gradients in SSMs when solving

the exponential function by the linear first-order Ordinary Differential Equations [77].

Building on the rigorous theoretical proofs of the HiPPO framework that enables SSMs

to capture long-range dependencies, Gu et al. [34] further introduce a data-dependent

selective structure SSM (i.e., Mamba) to significantly improve the computational efficien-

cies in conventional SSMs. Inspired by pioneering SSMs, vision-specific adaptations of

the Mamba architecture, such as Vision Mamba [78] and V-Mamba [79], propose visual

SSMs designs for computer vision tasks including image classification and object detec-

tion [78, 79]. SSMs are appealing for vision because they aggregate long-range context

in linear time with bounded memory, which scales favourably to high-resolution inputs

compared with quadratic-cost attention; moreover, their continuous-time formulation

and content-selective gating (as in Mamba) enable adaptive information propagation

that is robust to occlusions, large masks, and heterogeneous textures often seen in dense

prediction. However, their performance is still behind of the state-of-the-art transformer-

based models like SpectFormer [80], SVT [81], andWaveViT [82]. U-Mamba [9] effectively

extends the capabilities of Mamba for biomedical image segmentation by proposing a

hybrid CNN-SSM block. However, these studies ineffectively leverage the capabilities of

Mamba in image long-range pixel-level dependency learning and overlook the critical

spatial awareness during model designs.
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2.6.5 Mamba-based Image Inpainting

Selective State Space Models (SSMs), especially Mamba, have recently been explored for

inpainting due to their linear-time long-range modeling and favorable memory footprint.

Xiang et al. propose a Mamba-GAN pipeline that embeds visual state-space operators

(e.g., VSS with SS2D scanning) into the generator/discriminator, targeting high-resolution

hole filling and reporting quality–efficiency gains on natural images [83]. Beyond purely

adversarial designs, Wen et al. introduce a hybrid restoration framework (MatIR) that

alternates Transformer and Mamba layers and includes an Image Inpainting State Space

module with multi-directional scans; while framed as general restoration, the inpainting-

oriented state-space block is directly evaluated for completion quality [84]. In a more U-

Net–style architecture, Sandooghdar and Yaghmaee integrate “U-Net mamba” blocks with

parameter-assisted and edge-guided priors, showing that lightweight SSM components

can maintain structural integrity and perceptual quality in inpainted regions [85].

2.6.6 Limitations for GAN, Diffusion-based model, Transformer

and Mamba

Despite rapid progress, the three dominant generative families used for inpainting exhibit

characteristic limitations. GAN-based methods can suffer from training instability and

mode collapse, often producing sharp but semantically inconsistent fills and visible seams

near mask boundaries. In our work, we mitigate this by employing a composite training

objective that balances adversarial, reconstruction, and perceptual/style losses to stabilize

optimization and maintain diversity). Diffusion models offer stable optimization but incur

high sampling cost—multi-step sampling frequently leads to inference times of several

seconds to minutes, whereas our feed-forward design produces results in sub-second

latency (on the order of tenths of a second) at comparable resolutions. Transformer

backbones, while capturing global dependencies, typically incur quadratic attention

cost in the number of pixels. Restormer [10] reduces this to linear complexity via an

efficient attention formulation, yet it lacks explicit pixel-aware spatial attention for

precise boundary harmonization. Building on a linear-complexity backbone, our method
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introduces mask-aware, pixel-level spatial attention to refine fine structures without

sacrificing efficiency. SSM variants reduce complexity with linear-time scans but may be

sensitive to scan order and anisotropy, leading to drifting textures or misaligned geometry.

To alleviate this, our approach introduces 2D-consistent, mask-aware positional indexing

with multi-directional (cross-scan) alignment and boundary-aware feature routing, which

enforces spatial correspondence across scans and preserves local neighborhoods near

hole edges. These issues highlight the need for mask-aware conditioning, information-

preserving down-sampling, multi-scale context aggregation, and lightweight global

modules that reconcile structure and detail under diverse, irregular missing regions.

2.7 Datasets and Metrics

In this section, we review the literature related to image inpainting, focusing on both the

datasets commonly employed in this domain and the evaluation metrics used to quantify

reconstruction quality. We first introduce several benchmark datasets—CelebA, CelebA-

HQ, Places2, and the Dunhuang dataset—that provide diverse visual content ranging from

high-resolution facial images and natural scenes to culturally significant artworks. These

datasets serve as the foundation for developing and testing state-of-the-art inpainting

methods. We then discuss a suite of metrics—PSNR, SSIM, LPIPS, L1 loss, and FID—that

have become standard for assessing the performance of generative models in restoring

missing image regions. Each metric offers unique insights into the fidelity, structural

similarity, perceptual quality, and overall realism of the inpainted outputs, thus enabling

a comprehensive evaluation of the underlying algorithms.

2.7.1 Datasets

Table 2.1: Comparison of datasets used for image inpainting.

Dataset Number of Images Resolution Domain / Characteristics
CelebA 202,599 (10,177 identities) ∼178×218 Faces, diverse poses and backgrounds
CelebA-HQ 30,000 1024×1024 High-quality faces, photorealistic details
Places2 >10 million (400+ categories) Varies (∼256×256 common) Large-scale natural scenes, indoor/outdoor variety
Places365-Standard ∼1.8 million (365 classes) ∼256×256 Subset of Places2, scene classification benchmark
Dunhuang 600 (500 train / 100 test) ∼500×800 Ancient murals, cultural heritage restoration
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CelebA

The CelebFaces Attributes (CelebA) dataset is a large-scale face image dataset with

202,599 images of 10,177 celebrities with around 178× 218. The images cover diverse

facial poses and backgrounds, making CelebA useful for tasks like face recognition,

attribute prediction, and generative modelling. In image inpainting research, CelebA

often serves as a benchmark for face completion tasks, given its rich annotations and

variety.

CelebA-HQ

CelebA-HQ is a high-quality subset of CelebA introduced to facilitate photorealistic image

generation and editing. It consists of 30,000 human face images at 1024×1024 resolution,

derived and enhanced from the original CelebA dataset. This dataset retains the diversity

of CelebA but with higher fidelity images, making it become a standard for evaluating

facial inpainting due to its quality and resolution.

Places2

The Places2 dataset is a large-scale scene image database designed for high-level visual

understanding and frequently used in inpainting tasks. It contains over 10 million images

spanning 400+ scene categories, with each category (e.g., different types of indoor and

outdoor environments) having 5,000 to 30,000 training images. A widely used subset is

Places365-Standard, with 1.8 million training images across 365 scene classes. Places2

provides diverse and complex backgrounds (city streets, landscapes, rooms, etc.), which

helps train and benchmark image inpainting models on general scenes. In fact, many

state-of-the-art inpainting methods evaluate on Places2 because of its challenging variety

of real-world images. In this research, unless otherwise stated, the Places2-standard

dataset is implemented.

Dunhuang

This is a specialised dataset released for an e-Heritage restoration challenge (ICCV 2019)

focusing on ancient mural inpainting. It comprises 600 digital photographs of the Mogao
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Grotto cave paintings in Dunhuang, with image resolutions around 500×800 pixels. These

images capture both well-preserved and deteriorated regions of the murals, covering

themes like Buddha figures, architecture, and decorative patterns. The dataset is split into

500 training images and 100 testing images. Researchers use this dataset to develop and

evaluate inpainting algorithms for cultural heritage restoration, simulating the filling-in

of damaged parts of the ancient artwork. The Dunhuang dataset thus provides a unique

testbed for inpainting models on non-photographic, high-historical-value images.

2.7.2 Metrics

Peak Signal-to-Noise Ratio (PSNR)

PSNR is a classic full-reference metric for quantifying image inpainting quality. It is

defined in logarithmic decibel scale based on the mean squared error (MSE) between

a reconstructed image and the ground truth. For an 8-bit image with pixel values in

[0,255], PSNR is given by PSNR = 10 log10

(
2552

MSE

)
. A higher PSNR indicates that the

inpainted image is closer to the original, with less error. In image inpainting, PSNR is

used to measure how faithfully missing regions are filled – e.g., a model achieving higher

PSNR on a test set produces more accurate, less noisy restorations.

Structural Similarity Index Measure (SSIM)

SSIM [86] is a perceptual metric that evaluates image similarity in terms of structure,

luminance, and contrast, rather than absolute pixel differences. It computes similarity

by comparing local patterns of pixel intensities between an output and reference image,

combining measures of luminance, contrast, and structural correlation (often via mean µ,

variance σ2, and covariance σxy). The SSIM index ranges from –1 to 1 (with 1 indicating

identical images). A higher SSIM means the inpainted image retains more structural

information of the ground truth. In image inpainting studies, SSIM is a common metric to

report because it reflects the perceptual integrity of filled regions. A model with higher

SSIM produces outputs that are structurally more similar to the originals, indicating more
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plausible textures and object shapes.

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

, (2.11)

where µx and µy are the means of images x and y, σ2
x and σ2

y are the variances, σxy is the

covariance, the C1 and C2 are small constants to avoid division by zero.

Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS is a learned perceptual metric proposed by Zhang et al. (2018) that measures simi-

larity between images using deep network feature representations. Instead of comparing

pixels, LPIPS passes image patches through a pretrained convolutional neural network

(e.g. AlexNet or VGG) and computes the distance between the two images in the feature

level. These feature distances are then weighted by learned parameters calibrated to

human judgments, producing a score that correlates with human perceptual similarity. A

lower LPIPS score indicates two images look more alike perceptually. In the context of

image inpainting, LPIPS is often used to evaluate the visual realism of the filled-in regions,

such as whether textures and structures appear natural to a human observer. Since LPIPS

captures high-level differences that may not show in PSNR/SSIM, it complements those

metrics.

LPIPS(x, y) =

√√√√∑
l

1
HlWl

Hl∑
h=1

Wl∑
w=1

∥∥∥wl ⊙
(
f̂l(x)hw − f̂l(y)hw

)∥∥∥2

2
. (2.12)

In this equation, f̂l(x) and f̂l(y) are the normalised feature maps from layer l of a

pretrained network for images x and y, respectively. Hl andWl denote the height and

width of the feature map at layer l. wl are learned scalar weights applied channel-wise.

The symbol ⊙ denotes element-wise multiplication.

Mean Absolute Error (L1)

L1 loss refers to the mean absolute difference between the predicted image and the ground

truth image, computed pixel-wise. In formula, L1 = 1
N

∑N
i=1 |Pi −Gi|, where Pi and Gi

are the pixel values of the predicted and ground truth images respectively. This metric
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(also known as MAE) measures the average magnitude of errors without regard to their

direction. A lower L1 value implies the inpainted image is closer to the original on

average, indicating more accurate pixel reconstruction. In image inpainting literature,

L1 is often used as a loss function during training, due to its robustness against outliers

and tendency to produce sharper results than L2 loss. L1 can also serve as an evaluation

metric for reconstruction error, for example, reporting the mean L1 error on a masked

region quantifies how well a model restored the missing content. Generally, a smaller L1

is associated with better inpainting quality.

Fréchet Inception Distance (FID)

FID [87] is a distribution-based metric widely used to assess the realism of generated

images, including inpainted results. It compares the statistics of deep features (typically

from an InceptionV3 network [88]) between a set of generated images and real images.

The inpainted images are passed through the Inception network to obtain feature vectors

(usually from a late layer), and assuming these features follow a multivariate Gaussian,

FID computes the Fréchet distance between the two Gaussians – one for the model’s

outputs and one for the ground-truth data. The formula for FID between the real image

distribution N (µr,Σr) and generated image distribution N (µg,Σg) is:

FID = ∥µr − µg∥2 + Tr
(
σr + σg − 2

(
σrσg

) 1
2
)
, (2.13)

where µ and σ are the feature-wise mean and covariance of the two sets. Lower FID

values indicate that the feature distribution of inpainted images is closer to that of real

images, meaning higher fidelity and diversity in a perceptual sense. In image inpainting

evaluations, FID is very important for judging visual realism: a model that produces

inpainting results with unnatural artifacts or mode collapses will have a higher FID,

whereas a model that generates plausible, varied completions yields a low FID. FID has

become a standard metric [87] for comparing generative models and is often reported to

demonstrate the improvements in producing more photo-realistic inpainted results.
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CHAPTER 3

Image Inpainting for Non-Cleft Lip Generation

Portions of this chapter have previously been published in the following peer-reviewed

publication [66, 89]:

• Shuang Chen, Amir Atapour-Abarghouei, Jane Kerby, Edmond S. L. Ho, David

C. G. Sainsbury, Sophie Butterworth, Hubert P. H. Shum, “A Feasibility Study on

Image Inpainting for Non-cleft Lip Generation from Patients with Cleft Lip.” In

International Conference on Biomedical and Health Informatics (BHI). IEEE, 2022.

• Shuang Chen, Amir Atapour-Abarghouei, Edmond S. L. Ho, Hubert P. H. Shum,

“INCLG: Inpainting for Non-Cleft Lip Generation with a Multi-Task Image Process-

ing Network.” In Software Impacts (SIMPAC). ELSEVIER, 2023.

In this work, we present a software that predicts non-cleft facial images for patients

with cleft lip, thereby facilitating the understanding, awareness and discussion of cleft

lip surgeries. To protect patients’ privacy, we design a software framework using image

inpainting, which does not require cleft lip images for training, thereby mitigating the risk

of model leakage. We implement a novel multi-task architecture that predicts both the

non-cleft facial image and facial landmarks, resulting in better performance as evaluated

by surgeons. The software is implemented by PyTorch and is usable with consumer-level

colour images with a fast prediction speed, enabling effective deployment.
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Figure 3.1: Overview of the proposed method.

3.1 Introduction

Our work aims to generate a non-cleft lip from an image of a baby with a cleft lip while

protecting patient privacy. While StyleGAN [90] is a powerful option for style transfer,

its data demands and vulnerability to model-inversion attacks mean that, if trained on

limited clinical images of individuals with cleft lip, it could reveal patient identity [91].

We therefore adopt an image-inpainting paradigm trained exclusively on open, non-

clinical datasets, reserving clinical photographs only for held-out validation. This design

minimizes memorization risk by construction: because no patient images are used for

training, the network has no opportunity to memorize or leak identifiable clinical content.

Federated learning and privacy-preserving training (e.g., differentially private opti-

mization) are viable complementary strategies, but they cannot entirely eliminate residual

risks under all configurations. For the present project, the most conservative and reliable

safeguard is to avoid training on patient data altogether. We further rely on synthetic

occlusions and defect simulations applied to open-source faces to enrich training vari-

ability without introducing identifiable clinical information, thereby maintaining utility

while preserving privacy.

In the facial inpainting task, the surgical evaluation criteria correspond to the semantic

plausibility of the face shape and the image quality. Existing advances in facial inpainting

typically ensure the accuracy of generated facial attributes by supplying supplementary
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facial geometry information. EdgeConnect [1] first generates a structure map, then

combines the corrupted image to perform image inpainting in the second stage. However,

the correlation between structural information and texture is frequently redundant and

unreliable [39]. Human face can be modelled using landmarks and their geometrical

features [92]. Lafin [3] uses landmarks as indicators to more precisely described facial

attributes. Nonetheless, both of EdgeConnect and Lafin have a multi-stage limitation:

the final image quality is highly dependent on how well the indicator generation in the

first stage works.

This work, on the other hand, proposes a single-stage end-to-end multi-task image

inpainting framework to generate non-cleft lip from patients with cleft lip.

We propose a single-stage, end-to-end multi-task image inpainting model for syn-

thesizing non-cleft lips from patients with cleft lip. A shared encoder produces features

that feed two branches: (i) an image-generation branch and (ii) a landmark-prediction

branch. The landmark branch predicts facial keypoints from both the masked input

and intermediate inpainted context. These keypoints are then adaptively fused into the

generation branch as a geometry prior, yielding more coherent and anatomically plausible

facial attributes. Notably, our model is trained without images of individuals with cleft

lips, reducing privacy risks for patients. To evaluate our model and assess the feasibility

of the proposed method, we curated two clinical test sets, CleftLip10 and CleftLip24, from

real patients. We generate facial landmarks using a pretrained FAN detector [93] and

employ the resulting keypoints to guide structure-aware inpainting. For each image,

segmentation masks are applied to cover the cleft region and any medical equipment; our

model then automatically synthesizes a continuous lip and nose without a cleft. CleftLip10

contains 10 pairs of pre- and post-operative images, enabling paired visual comparison,

while CleftLip24 consists of 24 pre-operative images to evaluate performance in a more

challenging unpaired setting. We compare our results with EdgeConnect [1], LaFIn [3],

and CTSDG [2], and ask three professional cleft-lip surgeons to rank the outputs. In

addition, we report quantitative results on CelebA [35] to highlight the advantages of

our design.

The main contributions are summarised as follows:

• We propose an image inpainting approach to produce an non-cleft lip image from

32



Chapter 3. Image Inpainting for Non-Cleft Lip Generation

patients with cleft lip.

• We propose a multi-task network in which branches cooperate with each other

through parameter sharing between tasks, which can achieve both landmark pre-

diction and image inpainting at the same time.

• The code is available on: https://github.com/ChrisChen1023/ICLG, and vali-

dated on CodeOcean: https://codeocean.com/capsule/4388343/tree/v1.

This work involved human subjects or animals in its research. Approval of all ethical

and experimental procedures and protocols was granted by the host organisation, the

Research Ethics Committee, the Health Research Authority, and Health and Care Research

Wales, under Approval Nos. 19/LO/1690 and under IRAS Project ID: 240451.

3.2 Related Work

3.2.1 Cleft Lip and Palate

A cleft lip/palate is a medical condition where the lip/palate of a patient does not join

completely before birth, which usually occurs in the early stages of pregnancy. In the

UK, cleft lips are the most common facial birth defect, with one out of every 700 children

suffering from cleft lip and palate every year [94]. This explains the importance of cleft

lip and palate surgeries, which are usually performed on orofacial cleft patients at an

average age of three months [95]. Although the surgical treatment for cleft lip and palate

varies, their common objective is to achieve symmetry and enhance a nasolabial look [96].

Achieving symmetry and improving nasolabial appearance is a fundamental goal of

cleft lip surgery [96]. There are various surgical approaches to repairing a cleft lip. The

most commonly used worldwide at present are a Millard repair or a Fisher repair [97].

Repairing cleft lips is a specialist skill and training in the UK requires an extended period

of subspeciality training. Evaluating the outcome of cleft lip and palate surgery is an

essential part of being able to improve surgical technique. The current gold standard for

assessing outcomes is the Asher-McDade rating scale by using a 5-point standard scale

to assess nasolabial profile, nasal symmetry, nasal form, and vermilion border [98].
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Recently, with the rapid advancement of AI, technologies based on deep learning

have emerged to locate cleft lip surgical annotation and incisions to facilitate surgery [99].

This may help junior surgeons in the early stages of their career and also surgeons who

may not be as familiar with repairing cleft lips. Other clinical applications include being

able to predict the outcome of a cleft lip repair which would enable surgeons to adjust

their surgical procedure to provide the best outcome possible.

3.2.2 Facial Image Inpainting

Facial image inpainting is a crucial area of computer vision focused on reconstructing

missing or corrupted regions of a face image while ensuring that the restored areas are

semantically consistent and visually natural. This task plays an essential role in medical

applications such as cleft lip reconstruction, where it can simulate post-surgical outcomes

and assist surgeons in preoperative planning. Compared to generic image inpainting,

facial inpainting poses unique challenges due to the complex geometry and texture of

human faces. Achieving facial symmetry, maintaining proportionality, and preserving

fine-grained details are fundamental requirements for this task.

Recent state-of-the-art methods use auxiliary information, such as structural features

or facial landmarks, to guide the inpainting process. For example, EdgeConnect [1] is a

notable approach that employs a two-stage pipeline. In the first stage, a structure map is

generated to capture the essential edges and contours of the face. In the second stage,

the structure map is combined with the corrupted image to produce the final inpainted

output. While effective in many cases, this approach often struggles with inconsistencies

between structural and textural information. The correlation between the predicted edges

and the texture in the missing regions can be redundant or unreliable [39], leading to

suboptimal results.

Another method is Lafin [3], which leverages facial landmarks to guide the inpainting

process. Landmarks provide precise geometric descriptions of facial attributes [92],

allowing the model to focus on restoring critical features with greater accuracy. However,

Lafin and similar methods face challenges due to their multi-stage nature. In such

pipelines, the final output heavily depends on the quality of the intermediate results, such

as the accuracy of the predicted landmarks or structure maps. Inaccurate results in the
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early stages propagate to the later stages, compromising the quality of the reconstructed

image. Furthermore, the multi-stage design increases computational complexity and

processing time, making these methods less suitable for real-time applications. Our work

solves this problem by designing an end-to-end multi-task framework, which is able to

predict landmark points and regenerate the completed image.

3.2.3 Landmark Detection

Landmark detection is an important task in computer vision and medical imaging, in-

volving the identification of key points or features on objects of interest. In the context

of facial analysis, landmark detection plays an essential role in various applications,

including facial recognition, expression analysis, and image inpainting. The precise

localisation of landmarks enables models to capture geometric relationships, which are

pivotal for tasks requiring detailed spatial understanding.

Traditional methods for landmark detection relied heavily on handcrafted features

and classical statistical models. Techniques such as Active Shape Models (ASM) [100]

were among the earliest approaches. These methods modelled the shape and appearance

of facial structures using predefined templates and were effective for controlled scenarios.

However, their reliance on handcrafted features and sensitivity to variations in pose,

lighting, and occlusions limited their robustness in real-world settings.

Deep learning revolutionise the landmark detection. Dlib library introduced a CNN-

based facial landmark detector that demonstrated significant improvements over tra-

ditional methods [101]. Similarly, methods such as stacked hourglass networks [102]

and deep regression forests [103] further improved accuracy by capturing multi-scale

contextual information.

In medical applications, landmark detection has been evident by facilitating precise

surgical planning and assessment. For cleft lip and palate surgeries, landmarks are used to

evaluate symmetry and guide incisions. Studies like [104] introduced deep learning-based

frameworks tailored for medical landmark detection, combining CNNs with attention

mechanisms to focus on relevant anatomical features.

Recent approaches have started to explore the application which integrates landmark

detection with other related tasks such as segmentation or inpainting. For instance,
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Lafin [3] demonstrated the utility of facial landmarks for guiding image inpainting,

highlighting the potential for synergistic learning between tasks. Such frameworks

aim to improve the robustness of landmark detection while simultaneously enhancing

downstream tasks.

3.3 System Description

To protect the privacy of patients’ data, we decide to implement the non-cleft facial image

prediction system as an image inpainting framework. One key software engineering

decision in this research is the framework we use to implement the solution. Existing style

transfer-based frameworks [105] allow effective facial image generation with different

features. However, they require training data from both the source (i.e., cleft lip images in

our case) and target (i.e., non-cleft lip images) domains, which may lead to model leakage

where the trained model memorizes the training images. Conditional image translation

frameworks using GAN [105] or VAEs [106] may resolve the issue, but those methods

mainly focus on the synthesis of new colour patterns instead of geometric structures.

Our investigation led us to the image inpainting framework [3] as a suitable solution,

as it does not necessitate using cleft facial data for training. Additionally, the binary

mask effectively defines the lip area for synthesis with the rest of the face, serving as

conditions, making it well-suited to our requirements.

In particular, to implement an image inpainting framework, we utilise the image

generation network in [3] as the backbone, which is ameliorated from [1], given its

good performance in image inpainting. We also re-implemented the gated convolution

algorithm proposed in [16] to dynamically select features for each channel and location,

resulting in better inpainting quality.

On top of the backbone, we implement a multi-task system that predicts both the

non-cleft facial image and facial landmarks. Facial landmark has shown to be effective in

assisting facial image inpainting [1, 3], and is used extensively for cleft lip analysis [99].

Our work differs from existing approaches in that we employ a multi-task model, where

two tasks share a part of a common network and facilitate each other.

To prepare the training data, we employ an open facial dataset and a tailor-made
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masking algorithm. In particular, we use the CelebA dataset [35], which consists of

202,599 face images of over 10,000 celebrities. To prepare the data for training our

inpainting network, we apply an irregular mask algorithm following [15], such that our

network can learn to inpaint any masked regions of the face.

To test the system, we work with the NHS to collect a dataset of cleft lip images.

Due to the sensitive nature of the data, ethical approvals are obtained from the Research

Ethics Committee, the Health Research Authority, and Health and Care Research Wales,

under Approval Nos. 19/LO/1690 and under IRAS Project ID: 240451. Given a cleft lip

image, we manually draw a mask that covers the mouth area. The masked image is fed

into our multi-task network to create the non-cleft facial counterpart, with the facial

landmark as a side-product. Since cleft lip images are only used in testing, we mitigate

any risk of model leakage [91].

3.4 Methodology

We propose an end-to-end multi-task model, the framework is shown in Fig. 3.1. We

first train our model on CelebA, then perform inference step on real patient images

with cleft lip to generate non-cleft lip with semantic plausible facial attributes. Our

model can simultaneously perform image inpainting and facial landmark prediction. The

parameters in two tasks are shared through image-to-landmark and landmark-to-image

feature fusion operations. Formally, the whole pipeline could be denoted as:

(Î , L̂) = G(I ⊙ (1−M)), (3.1)

where G is our multi-task model, I is the real image andM denotes the segmentation

mask that occludes the cleft lip and medical equipment. Î and L̂ are completed image

and predicted landmarks respectively.

3.4.1 Dataset Collection

To verify that our model operates reliably on real clinical photographs, we collected

two datasets—CleftLip10 and CleftLip24—comprising frontal face images from infants (all
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under one year of age) who underwent cleft lip repair at the Royal Victoria Infirmary

(RVI), Newcastle upon Tyne, during outpatient clinics. CleftLip10 contains paired images

from 10 patients with 20 images, each with a pre-operative and an immediate post-

operative photograph (Canon PowerShot G1 X Mark II, 3072 × 2048), enabling direct

paired evaluation. CleftLip24 consists solely of pre-operative photographs from 24 patients

with 24 images (Canon EOS 20D or 5D Mark II with a 105mm lens, 2574× 3861). In total,

the collection includes 44 images. For structure guidance, facial landmarks are detected

using a pretrained FAN model [93], and the resulting keypoints are used in our inpainting

pipeline. All images were included in our experiments.

3.4.2 Encoder and Image Generator

The encoder and the image generator jointly perform the inpainting task. The masked

cleft lip image is downsampled three times and fed into the dilated convolutional residual

blocks used to improve the receptive field, followed by a short-long attention layer to

match feature more efficiently. We use gated convolutions instead of vanilla convolutions

only in the image downsampling and downsampling stages. This is because 1) using

gated convolution is more efficient for irregular masks [16], 2) its sensitivity to valid and

missing pixels seems to be significant only for encoder and decoder [17] and 3) extensive

use of gated convolution lead to a significant increase in parameter count. The shared

feature is extracted at the end of the encoder:

fshare = E(I ⊙ (1−M), (3.2)

where E is the encoder and fshare is the deep feature from the attention layer (See Fig.3.1

(Encoder)).

The image generator is designed to up-sample fshare and reconstruct a non-cleft

lip and nose. We employ three feature fusion blocks to facilitate parameter sharing,

which are denoted by F1, F2, F3 respectively. F1 and F3 aim to fuse the uncompleted

image features from encoder by skip connections to generate more exquisite results by

combining low-level and high-level feature.
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f̃l =


Fi (Concat (fei, fdi)) , if (i = 1, 3)

Fi

(
Concat

(
f̃1, V

))
, if (i = 2)

, (3.3)

where f̃i is the result from fusion block Fi (i = 1, 2, 3). fei and fdi is the feature map from

corresponding encoder and decoder layer. After F3 followed by a vanilla convolution

layer, completed image is generated. F2 is designed to fuse the Landmark map V from

the landmark predictor, which will be detailed in the next subsection.

3.4.3 Landmark Predictor

The landmark predictor involves extraction, fusion block and a fully-connected layer,

aims to predict facial landmarks and inform the generator for assisting image inpainting.

The extraction step is designed to collect the landmark information from the encoded

image feature. Specifically, fshare is fed to a 1×1 convolutional layer P1 to increase dimen-

sionality, then we conduct dimensionality reduction followed by global average pooling

to extract the feature into two vectors with different lengths (P4 and P3). Particularly,

there is a PReLu layer at the end of P3 for non-linear projection. Simultaneously, P2

also returns a vector after dimensionality reduction and global pooling directly acting on

fshare, then we concatenate them:

flmk = Concat (fnode2 , fnode3 , fnode4 ) , (3.4)

where fnodei is the corresponding vector from Pi. In existing multi-stage networks [1,

3], generated indicators are assumed as perfect and are used in final inpainting stage

directly. A faulty indicator may mislead image inpainting. To involve both corrupted and

regenerated information in landmark predictor, and strengthen the parameter sharing

between two tasks, we adaptively borrow f1 from inpainting task, followed by a global

average pooling, we merge it with the concatenated landmark feature vector:

f ′
lmk = γ ∗ f̃1 ⊕ flmk, (3.5)

where γ is a trainable weight with zero initialization and ⊕ is element-wise addition.
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Finally, we apply a fully-connected layer to predict facial landmark points.

To strengthen the parameter interaction between the two tasks and improve the

completed image quality, we further map the landmark points into a binary feature map

V , which is integrated with texture information in F2. Formally, let vpq be the value in V

at position (p, q):

vpq =


1, if (p = [αxi] , q = [αyi] )

0, otherwise
, (3.6)

where α is a scale factor corresponding the size of the feature map in F2, [.] means integer

operation. We create a 68× 128× 128 tensor with landmark annotations, and transfer it

to F2 to provide facial geometry indicators.

3.4.4 Loss Function

We follow Yang et al. (2019) to design our loss function. Given the predicted landmark L̂

and corresponding landmark ground truth Lgt, the landmark loss is:

Llmk =
∥∥∥L̂− Lgt

∥∥∥2

2
. (3.7)

We also consider L1 loss, adversarial loss, style loss, perceptual loss, total variation loss.

Given a masked image I and the ground truth image Igt:

Lrec = E
[
∥Iout − Igt∥1

]
, (3.8)

Lperc = E
[∑

i

∥ϕi (Iout)− ϕi (Igt)∥1

]
, (3.9)

Lstyle = E
[∑

i

∥(ψi (Iout)− ψi (Igt))∥1

]
, (3.10)

Ladv = min
G

max
D

EIgt [logD (Igt)] + EIout log [1−D (Iout)] , (3.11)
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where ϕi(·) indicates the activation map from the i-th pooling layer of VGG-16. ψi(·) =

ϕi(·)Tϕi(·) denotes the Gram matrix. The loss combination is:

Ltotal(I, Igt, Lgt) = Lpixel + λperc Lperc + λstyLstyle

+ λtvLtv + λadvLadv

+ λlmkLlmk,

, (3.12)

where λperc = λsty = λtv = 0.1, λadv = 0.01, λlmk = 0.00046. The weights of each loss

are tuned by using Optuna [107].
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Algorithm 1: GAN-based Training for Proposed Multi-task ModelMTθ (Re-

vised)
Input: Generated image x, image ground truth X , predicted landmark k,

landmark ground truth K , irregular maskM , maximum iterations T ,

batch size 4

Output: Trained Multi-task ModelMTθ

1 Initialise dataloader;

2 Initialise the multi-task networkMTθ;

3 for t← 0 to T do

4 Sample 4 images and corresponding landmarks from dataloader;

5 Sample 4 irregular masks from dataloader;

6 Compute losses: Lpixel, Llandmark, Ltv, Lstyle, Lperceptual, Lg, Ld using

MTθ(X,M, k);

7 Aggregate generator loss:

LG ← Lpixel + Llandmark + Ltv + Lstyle + Lperceptual + Lg

;

8 Define discriminator loss:

LD ← Ld

;

9 Freeze generator parameters θG and update discriminator using adversarial

loss LD;

10 Freeze discriminator parameters θD and update generator using adversarial

loss LG;

11 Save the trained Multi-task ModelMTθ;
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Table 3.1: Valid Possibility on Cleft Lip dataset.

Method EC [1] Lafin [3] CSTDG [2] Ours

CleftLip10 0.233 0.233 0.233 0.5

CleftLip24 0.319 0.222 0.264 0.333

Table 3.2: Average Ranking on the Cleft Lip dataset.

Method EC [1] Lafin [3] CSTDG [2] Ours

CleftLip10 1.857 1.714 2.429 1.267

CleftLip24 1.696 1.813 1.947 1.208

3.5 Experiments

3.5.1 Training Details

We train our model with a GAN-Based training flow (as shown in Algorithm 1) on

CelebA [35], which is a popular human face dataset containing over 160 thousands

training face images (Sec.2.7.1). For CelebA, we remove a few images which can not be

obtained landmark ground truth. We adopt [93] on CelebA to get the landmark ground

truth. During training, the images are resized to 256× 256 and we use irregular masks as

in [15]. Although adult faces and infant images differ in overall distribution, the structural

priors learned from adult lips and noses are sufficiently stable to transfer. We use Adam

optimiser and follow [1] to set β1 = 0 and β2 = 0.9. The learning rate = 2.92× 10−4 and

2.92× 10−5 for discriminator, with a learning rate decay ratio of 0.78. Batch size = 4.

3.5.2 Experimental Validation

Cleft Lips Repair

We use the CleftLip10 and CleftLip24 as test sets to compare our model with the current

state-of-the-art facial inpainting methods [1–3]. The visualisation results are shown in

Fig. 3.2. We crop and resize them to 256×256, then design a mask to cover the cleft lip, as

43



3.5. Experiments

(a) Input (b) EC (c) CTSDG (d) Lafin (e) Ours (f) Before Surgery

Figure 3.2: Visual comparison of different facial inpainting methods on real Cleft Lip
dataset: (a) input masked image, (b) EdgeConnect [1], (c) CTSDG [2], (d) Lafin [3], (e)
Ours, and (f) Before Surgery

Table 3.3: Quantitative Comparison on CelebA.

Mask Ratio Model PSNR SSIM FID

EC [1] 36.1340 0.9880 0.4706
0-20% Lafin [3] 35.9544 0.9870 0.5845

CTSDG [2] 37.9275 0.9908 0.3420
Ours 38.1083 0.9911 0.3421

EC [1] 28.3684 0.9486 3.1275
20-40% Lafin [3] 28.2797 0.9476 3.3880

CTSDG [2] 29.3860 0.9570 2.8436
Ours 29.6678 0.9595 2.8327

EC [1] 23.4513 0.8561 6.1253
40-60% Lafin [3] 23.5109 0.8614 6.5367

CTSDG [2] 24.3130 0.8762 8.7051
Ours 24.2076 0.8726 4.3419

well as the medical equipment used during surgery, according to the type (unilateral and

bilateral) and the severity of cleft lip for each patient. To better evaluate the feasibility of

the proposed method, we invited NHS specialist cleft lip surgeons to assess the results

based on the quality, consistency and validity. For each patient, results from four models

are presented together. To avoid bias, the results are mixed and unlabelled. Images are

deemed invalid if it is excessively blurry or illogical, e.g., flying lip or three nostril (see

Fig. 3.2(d)). The valid probability represents the the success rate of models in repairing

cleft lips images (see Table 3.1), and the average ranking represents the performance of

each models in the valid repaired results (see Table 3.2).

From our observation, each of the four models is capable for repairing small cleft
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lip areas. However, our method performs best for relatively complex situation, such as

Fig. 3.2(f) with severe cleft lips and large medical equipment. The result from EC [1] is

too blurry and CTSDG [2] leads obvious artifacts in regenerated region. Lafin [3] seems

to be suffering from model collapse and was seriously misled by the input indicator,

generating a full nose at the right nostril. From the surgeons assessment, our model

generates more natural and semantically plausible images with a higher valid possibility.

Additionally, our model is able to generate textures similar to post-surgical scars while

we leave certain intimation to the model (see Fig. 3.2(e)).

Facial Inpainting

We compare our model with current state-of-the-art facial inpainting models on CelebA.

The evaluation metrics involve peak signal-to-noise ratio (PSNR), structural similarity

index (SSIM) [86] and Frechet Inception Distance (FID) [87], which is shown in Table

3.3. Higher PSNR, SSIM, and lower FID, indicate better generated image quality. We

further visualize the results in Fig 3.3 for qualitative comparison. We observe that our

model overall suppresses state-of-the-art inpainting models in terms of small and medium

masked ratio. The latest CTSDG outperforms ours by a small margin in large missing

regions case in terms of PSNR and SSIM, but it is much lower than ours in FID.

Table 3.4: Ablation Study on CelebA.

Mask Irregular Mask Regular
Mask Ratio 0-20% 20-40% 40-60% Mask
Baseline 37.1742 29.1189 23.7541 25.9412

PSNR Base+Lmk 37.3932 29.2115 23.7948 26.074
Ours 38.1083 29.6678 24.2076 26.685

Baseline 0.9895 0.9545 0.8605 0.9113
SSIM Base+Lmk 0.9897 0.9554 0.8626 0.9144

Ours 0.9911 0.9595 0.8726 0.9231
Baseline 0.5330 3.3655 5.7635 3.6037

FID Base+Lmk 0.4614 2.9762 5.1124 3.410
Ours 0.3421 2.8327 4.3419 3.274

To validate the effectiveness of our multi-task architecture, we remove the parameter

sharing between two tasks and take encoder followed by image generator as the baseline.
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Then, we implement the landmark predictor (Base+Lmk) and gated convolution (Ours)

progressively. As shown in Table 3.4, the integration of both the multi-task model and

gated convolutions improve the performance on both irregular and regular masks.

3.6 How to Use the System

To retrieve the training dataset for this image inpainting application, users are required to

download the CelebA Dataset [35] and the irregular mask dataset [15] from the respective

official websites. The CelebA dataset should then be divided into a standard training set

and a validation set, according to the official instruction. Additionally, the corresponding

landmark points should be generated with FAN [93]. Furthermore, the irregular mask

dataset should be divided into three groups according to the mask ratios (0-20%, 20-40%,

40-60%). 3,300 masks are randomly selected from each group, resulting in a total of 9,900

mask images for training. Another 200 masks are selected from each group, resulting in a

total of 600 mask images for verification. For the inference step, all cleft facial images and

their corresponding masks serve as the image test set and the mask test set, respectively.

The user should then run the provided “./scripts/filst.py” script to generate training, test

and validation set file lists, and update the information in the “config.yml” file accordingly

to set the model configuration. Once the python environment has been set up using

the released “requirements.txt” file, the user may proceed to run the “train.py” script

for training and the “test.py” script for testing. For the inference process, although we

recommend using our system with GPUs for better speed, the system is fully runnable

with only CPUs. Due to the sensitivity of patient privacy, we are not allowed to upload

the cleft lip data for an online demonstration. Therefore, we show the reproducibility of

our system with the images from CelebA and the irregular masks.

3.7 Impact Overview

While our method primarily focuses on cleft lips, the uses of the implemented source

code can be extended to other applications. The key idea of this software is to mask out a

particular region of a face, and to employ inpainting techniques for predicting the masked
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area. The versatility of our system allows for the implementation of extended facial

applications, such as makeup and plastic surgery prediction. To utilize these capabilities,

a customized dataset is required for training, such as the Facial Beauty Database [108] or

a plastic surgery facial dataset [109]. The users then need to retrain our model according

to section 2.3. The resulting model can then be tested using a corresponding mask that

covers specific facial components, such as nose or eyebrows, to generate the image of

the subject after makeup or plastic surgery. Therefore, it can also be used for supporting

plastic surgeries and makeup prediction [110] on specific facial components. This would

facilitate the understanding and discussion of those operations and applications among

stakeholders.

We put a particular effort in selecting a software framework that is robust against

model leakage and attack [91,111]. In particular, we propose the idea of excluding patient

data in training deep learning models if possible, mitigating any privacy concerns and

risk of data loss. The high-level concept of training with open data and testing with

sensitive data can be employed in other machine learning applications to protect data

privacy, particularly those in the healthcare domain or involving people of vulnerable

groups.

In theory, our system is also capable of synthesising cleft facial images from non-cleft

lip ones. In practice, due to the wide variety of cleft lip conditions, training such a system

would require a large dataset of cleft images, which is currently not available. Should

there be enough data (and we only need the lip area to protect patients’ privacy), this

system can be used to generate synthetic cleft lip facial images, which enable the training

of machine learning algorithms. As the data is artificially created, there is no privacy

or model leakage concern, and an unlimited amount of samples can be created. This

aligns with the recent trend of using computer graphics techniques to mock up real-

world data [112], facilitating the training of machine learning systems for patient-related

applications [113]. Since the beginning of this research, there is raising awareness from

both UK universities and hospitals in collecting cleft lip data for research purposes. We

believe our vision will be made possible in the future.
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3.8 Conclusion and Discussions

This work implements a multi-task image inpainting model to predict non-cleft lip

facial images from cleft lip ones. We make an important software engineering decision to

implement the system under an inpainting framework, which does not require patient data

for training and mitigates model leakage risks. We design and develop a multi-task neural

network that co-predicts a facial image and the corresponding facial landmarks, and we

find that the two tasks support each other. We collected two real-world patient datasets to

demonstrate the feasibility of proposed approach. Three expert cleft lip surgeons assessed

that our design outperforms state-of-the-art methods in both valid possibility and image

quality, while the performance of our model on CelebA also suppresses the state-of-the-

art facial inpainting counterparts. Apart from detailing the design and implementation

details of our software, we also discuss its impact within and beyond cleft lip applications.

The source code is now publicly released on CodeOcean and GitHub.

This work lays the foundation for advancing general-purpose image inpainting tech-

niques. While our current work demonstrates the clinical and practical value of a multi-

task inpainting framework for cleft lip repair, the challenges encountered in preserving

sparse yet critical visual cues highlight broader limitations of existing inpainting architec-

tures. These insights motivate the subsequent research, a transformer-based inpainting

modelHINT , that employs a mask-aware downsampling strategy and efficient attention

mechanisms to better preserve visible structures and exploit long-range dependencies.
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CHAPTER 4

HighQuality Image Inpainting with Enhanced Transformer

Portions of this chapter have previously been published in the following peer-reviewed

publication [58]:

• ShuangChen, Amir Atapour-Abarghouei, Hubert P. H. Shum, “HINT: High-quality

INpainting Transformer with Mask-Aware Encoding and Enhanced Attention”, In

IEEE Transactions on Multimedia (TMM). IEEE, 2024.

Existing image inpainting methods leverage convolution-based downsampling ap-

proaches to reduce spatial dimensions. This may result in information loss from corrupted

images where the available information is inherently sparse, especially for the scenario of

large missing regions. Recent advances in self-attention mechanisms within transformers

have led to significant improvements in many computer vision tasks including inpainting.

However, limited by the computational costs, existing methods cannot fully exploit the

efficacy of long-range modelling capabilities of such models. In this paper, we propose an

end-to-end High-quality INpainting Transformer, abbreviated as HINT, which consists of

a novel mask-aware pixel-shuffle downsampling module (MPD) to preserve the visible

information extracted from the corrupted image while maintaining the integrity of the

information available for high-level inferences made within the model. Moreover, we

propose a Spatially-activated Channel Attention Layer (SCAL), an efficient self-attention
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mechanism interpreting spatial awareness to model the corrupted image at multiple

scales. To further enhance the effectiveness of SCAL, motivated by recent advanced

in speech recognition, we introduce a sandwich structure that places feed-forward net-

works before and after the SCAL module. We demonstrate the superior performance of

HINT compared to contemporary state-of-the-art models on four datasets, CelebA [35],

CelebA-HQ [4], Places2 [5], and Dunhuang [36].

4.1 Introduction

A significant challenge hindering image inpainting is effectively modelling the valid infor-

mation within visible regions, which is crucial for reconstructing semantically coherent

and texture-consistent details in the missing regions. This is particularly noticeable in

large masked regions, where the valid information is limited. Existing methods that utilise

convolutional layers for downsampling come with the inherent drawback of information

loss [24], attributed to the reduction of feature size from filters and downsampling. Given

its capability to preserve input information, pixel-shuffle down-sample is widely used in

image denoising [25], image deraining [26] and image super-resolution [27]. It period-

ically rearranges the elements of the input into an output scaled by the sample stride.

However, its effectiveness depends on the assumption that the sample stride is small

enough to avoid disrupting the noise distribution [28]. This holds only for a relatively

independent distribution of raindrops and noise, and is not suitable for image inpainting

with irregular and variable-size masks. Simply using conventional Pixel-shuffle Down-

sampling (PD) [25–27] for corrupted image would lead to the problem of pixel drifting,

which is shown in Fig. 4.2 (upper branch). The pixel drifting happens in X̂ . After the

featureX ′ is downsampled, the position of the masked regions (white elements) becomes

inconsistent across channels, causing the visible area to be misaligned in the channel,

disrupting subsequent feature extraction processes within the model, thus affecting the

accurate modelling of the valid information from the visible regions of the input image.

Another challenge in applying spatial self-attention in CNN-based models is its sig-

nificant computational expense. Considering this, spatial self-attention is typically only

employed on low-resolution representations [73, 114]. While transformer-based meth-
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ods [8,72] employ multiple spatial self-attention blocks to model long-range dependencies.

However, the quadratic computational complexity limits their wider applicability. To

address this, the prevalent compromise involves down-sampling [8] or reducing the

resolution [72] of the input image prior to being passed through the transformer. How-

ever, this strategy leads to information loss from the input images through the model,

which is detrimental to image inpainting where visible information is already limited.

This loss subsequently results in the degradation of fine-grained features. As long-range

dependencies are modelled over these degraded features, the reconstructed output suffer

from blurring artefacts and vague structures. [72,73] introduce extra refinement networks

to improve image quality after getting coarse completed images, rather than recovering

high-quality results directly. The method in [10] replaces spatial self-attention with chan-

nel self-attention to reduce computational complexity. Although channel self-attention

gains linear computational complexity, it completely loses spatial awareness. This makes

it possible to highlight “what” the salient features are but cannot discern “where” the spa-

tially important regions are, which is essential as visible regions often exhibit complex and

irregular shapes, especially with large irregular masks. Some existing works [115–117]

attempt to address the spatial awareness loss by incorporating spatial self-attention back

to the channel self-attention, but at a cost of significant increases in computation.

To address these common challenges currently restricting progress in the existing

literature, we present a novel High-quality INpainting Transformer (HINT) for image

inpainting, which enables efficient multiscale modelling of the global context while

minimising the loss of valid information. Specifically, we propose a tailor-made pixel-

shuffle down-sampling (MPD) module for image inpainting to reduce information loss

and maintain the consistency of data. To enhance the representation learning capabilities

of our model, we develop a Spatially-activated Channel Attention Layer (SCAL) to

blend information in both the channel and spatial dimensions. Unlike these existing

methods [115–117], the innovation of SCAL lies in its minimalistic and efficient design,

only utilising convolutional layers to retrain spatial awareness, thereby mitigating the

significant computational cost, which is a major issue in the field. This enhanced self-

attention module plays the predominant role in HINT and build HINT as a transformer-

based model. To further improve the effectiveness of SCAL with limited parameters, we
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Figure 4.1: The overview of the proposed framework, which is built with a gated
embedding block, with multiple stacked “sandwiches” in different levels. The “sandwich”
is described in Sec. 4.2.3, the MPD is described in Sec. 4.2.2

propose a module known as the “Sandwich”, sandwiching the proposed SCAL between

two feed-forward networks (FFNs) for each transformer block. This structure results in

better performance compared to alternative designs with the same number of network

parameters.

Comparative experiments show that HINT outperforms state-of-the-art image inpaint-

ing approaches (Fig. 4.5 and Fig. 4.4) across four datasets, i.e., CelebA [35], CelebA-HQ [4],

Places2 [5] and Dunhuang challenge [36]. We also perform ablation experiments to

demonstrate the contribution of proposed components in HINT.

Our source code is openly released at https://github.com/ChrisChen1023/HINT.

Our major contributions are as follows:

• We propose HINT, an end-to-end transformer-based architecture for image inpainting

that takes advantage of multi-scale feature- and spatial-level representations as well as

pixel-level visual information.

• We propose a plug-and-play mask-aware pixel-shuffle down-sampling (MPD) mod-

ule to preserve useful information while keeping irregular masks consistent during

downsampling.

• We propose a Spatially-activated Channel Attention Layer (SCAL) using self-attention

and convolutional attention to sequentially refine features at the channel and spatial

dimensions. We further design an improved sandwich-shaped transformer block to

boost the efficacy of the proposed SCAL.
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4.2 HINT: High-quality INpainting Transformer

Formally, the problem is formulated as follows: the input image, Iinput, is obtained by

concatenating masked image, IM = I ⊙M , and the mask,M . The input image, Iinput, is

then processed by our proposed HINT model and a semantically accurate output image,

IC , will be generated. The whole formulation is denoted as: IC = HINT (Iinput).

We present our transformer-based HINT approach to image inpainting, which takes

advantage of our novel Mask-aware Pixel-shuffle Down-sampling (MPD) to solve the

information loss issue during downsampling and further enhance the use of valid in-

formation from known areas. Within the architecture, we propose a Spatially-activated

Channel Attention Layer (SCAL), which aims to handle spatial awareness while main-

taining efficiency within the transformer block. The SCAL is encapsulated between

two feed-forward networks, forming a sandwich-shaped transformer block, henceforth

referred to as “Sandwich”. This design enables the effective extraction of long-range de-

pendencies while preserving the smooth and coherent flow of valid information through

the model.

4.2.1 The Overall Pipeline

Overall, as seen in Fig. 4.1, HINT consists of an end-to-end network with a gated embed-

ding layer to selectively extract features, followed by a transformer body for modelling

long-range correlations, and a projection layer to generate the output. Specifically, we

insert a gating mechanism [16] into the embedding layer serving as a feature extractor,

achieved by using two parallel paths of vanilla convolutions with one path activated by

a GELU non-linearity [118] to dynamically embed the finer-grained features, leading

to stronger representation learning and better optimisation [119]. The transformer

body is an encoder-decoder architecture comprising multiple transformer blocks. The

encoder consists of the first three blocks, each followed by an MPD layer to mitigate

incoherence in invalid locations, while the final three blocks with conventional pixel

shuffle upsampling form the decoder. Mirrored blocks are connected via skip connections

to preserve shared features learned within the encoder. At the end, a convolutional layer

is used to project the decoded features to the final output.

54



Chapter 4. HighQuality Image Inpainting with Enhanced Transformer

Figure 4.2: The comparison of Pixel-shuffle Down-sampling (PD, upper) and the pro-
posed Mask-aware Pixel-shuffle Down-sampling (MPD, lower). Ours proposed MPD,
with one 3× 3 convolution, a conventional PD, interlacing (concatenation of feature and
mask slices), and a masked-separable convolution. Invalid pixel drifting happens in X̂ .
After the feature X ′ is downsampled, the masked position becomes inconsistent across
channels.
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4.2.2 Mask-aware Pixel-shuffle Down-sampling

Conventional Pixel-shuffling Down-sampling (PD) is the inverse operation of Pixel-

shuffle [120]. It periodically rearranges the input Tin ∈ RH×W ×C into Tout ∈ RH
s

× W
s

×s2C

for downsampling with s being the scale factor to denote the sample stride. PD can

effectively preserve the input information, which is desirable for inpainting, particularly

for reconstructing high-quality images. However, as PD uses non-overlapping sampling

with stride s to generate mosaics from the image [120], the consistency of missing pixel

locations can be disrupted during the down-sampling, as shown in Fig. 4.2, making it

unsuitable for image inpainting.

We propose a Mask-aware Pixel-shuffle Down-sampling (MPD) module, which is a

novel down-sampling approach specifically tailored for image inpainting. It resolves the

issue of positional drift of masked pixels that occurs during the process of conventional

PD. Furthermore, in contrast to convolution-downsampling, MPD preserves all valid

information, thereby minimising information loss. Apart from inpainting, this module

can be plugged into any other problem that involves masking, such as any that might

use image segmentation labels masks as their input.

Given the features X ∈ RH×W ×C and maskM ∈ RH×W ×1, we first project X into

X ′ with half the channels but the same size [120], utilising a 3× 3 convolution operator

h(·), and perform PD on both X ′ andM :

M̂ = PD(M), X̂ = PD(h(X)). (4.1)

As shown in Fig. 4.2, the positions of the missing pixels in X̂ drift and are discontin-

uous across channels while each channel of M̂ sequentially indicates the positions of

valid and invalid pixels in X̂ . To enforce M̂ to act on the corresponding channel accu-

rately, we intersperse and concatenate the sliced X̂ and M̂ across the channel, obtaining

X̂c ∈ RH
2 × W

2 ×2C .
M̂0, M̂1, M̂2, M̂3 = Slice(M̂),

X̂0, X̂1, X̂2, . . . , X̂2C−1 = Slice(X̂),
(4.2)
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Figure 4.3: “Sandwich” (right) and “Spatially-activated Channel Attention Layer” (left).
“
⊕
”,“
⊗
”, and “

⊙
” denote the element-wise sum, matrix multiplication, and element-wise

multiplication, respectively.

X̂c =(X̂0||M̂0)|| . . . ||(X̂ i||M̂ (i+4)%4)|| . . .

||(X̂2C−1||M̂3),
(4.3)

where Slice(·) is a channel-wise slice, || is channel-wise concatenation, and % denotes

the modulo operator. Thus, each feature has a paired mask as an indicator. In the end, we

exploit a separable convolutional layer [121], denoted as ϕ(·), to encode pairs of features

and masks, aiming to learn the correct local priors from the features indicated by the

shuffled mask, and forcing the encoder to accurately model the valid information within

the visible regions. The output is formulated as:

Xout = ϕ(X̂c). (4.4)

4.2.3 The Transformer Body

Each of the seven transformer blocks stacks multiple sandwiches encapsulating the

proposed SCAL for local-global representation learning, working with MPD to down-

sample the features and control data flow consistency (Fig. 4.1).
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Spatially-activated Channel Attention Layer

We propose a Spatially-activated Channel Attention Layer (SCAL) to strengthen themodel

to capture inter-channel dependencies while preserving spatial awareness. Channel self-

attention [122] is computationally viable for high-resolution features due to its linear

time and memory complexity growth with channel depth. However, it fails to account

for “where” the important information is across the entire spatial position, thus ignoring

the relationship between feature patches. This is very important for image inpainting as

the global context in the valid regions within each image can be distinct and irregularly

shaped, as defined by the irregular maskM .

To alleviate this issue, we improve the concept of transposed attention [10] by intro-

ducing a convolution-attention branch to capture the attention matrix of spatial locations.

This enables HINT to effectively model long-range dependencies in the channel dimen-

sion, while attending to spatial locations where features should be emphasised. Unlike

alternative approaches [8, 69, 70, 72, 73], SCAL does not increase the computational cost

quadratically with input resolution, making it feasible for multi-scale context modelling.

As shown in Fig. 4.3, SCAL contains two branches. Given input featureX , the channel

self-attention branch is:

Xc = LN(X),

X̂c =
(
W V

d3W
V
1 Xc

)
· Attc(Xc),

Attc(Xc) = φ

WQ
d3W

Q
1 Xc ·

(
WK

d3W
K
1 Xc

)T

γ

 ,
(4.5)

where LN denotes layer normalisation, γ is a learnable parameter to scale the dot product

of key and query,W1 is the linear projection andWd3 is the 3×3 depth-wise convolution,

Attc(·) represents the function to calculate the channel attention map, and φ is a softmax

layer. In the spatial branch, we first downsample the input features X but not fully

squeeze, via average pooling to preserve global spatial information. Subsequently, two

3 × 3 convolutions serve as attention descriptors followed by an upsampling process,

generating a soft global attention matrix, α = Atts(X), which is used to reweight the
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output obtained through channel attention:

Atts(X) = Up(f(g(AP(X)))), (4.6)

where AP is an average pooling layer, Up is upsampling. f(·) and g(·) are two similar

convolution blocks, one of which contains a 3× 3 convolutional layer, a normalisation

layer, and a ReLU layer [123]. Atts(·) represents the function to calculate the spatial

attention map. As depicted in Fig. 4.3, the attention matrix α modulates the output of

the channel branch X̂c through point-wise multiplication. Subsequently, the mapping

function θ(·) is a projection layer performed via of a 1× 1 convolution. The complete

representation of the SCAL is:

SCAL(X) = θ(X̂c ⊙ Atts(X)). (4.7)

Algorithm 2: Sandwich Block (FFN–SCAL–FFN)
Require: Feature map x ∈ RB×C×H×W

Ensure: y ∈ RB×C×H×W

1: y1 ← x+ FFN(x)

2: y2 ← y1 + SCAL(y1)

3: y ← y2 + FFN(y2)

4: return y
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Algorithm 3: SCAL: Spatial–Channel Adaptive Layer
Require: z ∈ RB×C×H×W

Ensure: out ∈ RB×C×H×W

1: c← GAP(z)

2: ĉ← σ(MLP(c))

3: zc ← z ⊙ Broadcast(ĉ)

4: savg ← Mean(z; channel)

5: smax ← Max(z; channel)

6: sin ← Concat(savg, smax)

7: ŝ← σ(Conv3×3(sin))

8: zs ← z ⊙ ŝ

9: gin ← Concat(zc, zs)

10: g ← σ(Conv1×1(gin))

11: out← g ⊙ zc + (1− g)⊙ zs

12: return out

Sandwich-shaped Transformer Block

Image inpainting presents a significant challenge: the network must effectively learn

from limited context to reconstruct complete images. This task is particularly daunt-

ing when faced with irregularly shaped masks, which complicate feature extraction,

especially in areas with extensive missing information. This process of masking in im-

age inpainting bears a notable resemblance to the masking of audio spectrograms in

speech recognition for data augmentation purposes, as seen in techniques like SpecAug-

ment [124, 125]. The Conformer [126], with its innovative “FFN-Attention-Conv-FFN”

architecture, demonstrates remarkable efficiency in speech recognition by using aug-

mented, masked spectrograms as inputs. We hypothesise that such structures are equally

effective for image inpainting, since their inputs are also incomplete and insufficient,

highlighting a common challenge in both fields that may benefit from similar architectural

solutions.

Therefore, to boost the effectiveness of our attention layer, we propose a sandwich-

shaped transformer block with an FFN-Attention-FFN structure. This first FFN serves
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as a filter, extracting more essential features for the following attention layer to cap-

ture long-distance dependencies (see Section 4.3.4 for validations). Unlike [126], we

remove the convolutional layer in the middle, and enhance the two FFNs with depth-wise

convolutions with a gate mechanism [10]. This is because FFN integrating depth-wise

convolution captures local information from every channel, which helps the model learn a

more comprehensive and informative feature representation with fewer parameters [121].

Also, the gating strategy selectively filters and modulates the information flow according

to the importance of each feature to the final high-quality output, thereby reducing

irrelevant information and highlighting the most salient input features for representation

learning. Given an input X ∈ RH×W ×C , our sandwich is formulated as:

Xout = FFN(SCAL(FFN(X))). (4.8)

4.2.4 Loss Functions

To obtain high-quality inpainting results, we follow the established literature [38,127] to

develop multiple loss components, including an L1 loss to enforce a contextually sound

reconstruction, style loss Lstyle to measure the difference in style, perceptual loss Lperc to

compare the high-level perceptual features extracted from a pre-trained network, and an

adversarial loss Ladv to improve overall output quality.

L1 = E
[
∥Iout − Igt∥1

]
, (4.9)

Lperc = E
[∑

i

∥ϕi (Iout)− ϕi (Igt)∥1

]
, (4.10)

Lstyle = E
[∑

i

∥(ψi (Iout)− ψi (Igt))∥1

]
, (4.11)

Ladv = min
G

max
D

EIgt [logD (Igt)] + EIout log [1−D (Iout)] , (4.12)
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where ϕi(·) indicates the activation map from the i-th pooling layer of VGG-16. ψi(·) =

ϕi(·)Tϕi(·) denotes the Gram matrix. The final loss function is thus denoted as:

Ltotal(Î, Igt) =λ1L1 + λ2Lstyle + λ3Lperc

+ λ4Ladv,
(4.13)

where the weighting coefficients λ1 = 1, λ2 = 250, λ3 = 0.1, λ4 = 0.001 were chosen based

on the parameter analysis (see Section 4.3.4).

4.3 Experiments

In this section, we present a comprehensive evaluation of the proposed HINT. First, we

describe the datasets employed and delve into the specifics of the implementation. Then,

we compare HINT with state-of-the-art methods to showcase its superior performance,

with both quantitative and qualitative results. Finally, we conduct thorough ablation

studies to evaluate the significance of each proposed component.

4.3.1 Datasets

To assess the efficacy of our proposed method, we employ CelebA [35], CelebA-HQ

[4], Places2-Standard [5] and Dunhuang Challenge [36] datasets. All experiments are

conducted with 256×256 images, providing a comprehensive evaluation of our approach

in a consistent and well-defined setting. The CelebA [35] and CelebA-HQ [4] are two

human face datasets with different qualities, while the Places2-Standard dataset is a subset

of the Places2 [5] dataset offering a diverse collection of scenes, such as indoor and outdoor

environments, natural landscapes, and man-made structures and constructions. These

three datasets are commonly used within the existing literature on inpainting [8, 72, 73],

making them ideal for evaluating our approach. The Dunhuang Challenge [36] dataset

represents a practical application of image inpainting in real-world scenarios.

For CelebA and Dunhuang, we follow the standard configuration to split the data

for training and testing. In the case of the CelebA-HQ dataset, to ensure reproducibility,

we use the first 28,000 images for training and the remaining 2,000 images for testing.

For the Places2-Standard dataset, we use the standard training set and validation set
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Table 4.1: Comparisons on the Dunhuang Challenge dataset.

Model PSNR↑ SSIM↑ L1↓ LPIPS↓

StructFlow [130] 35.199 0.9559 0.475 0.0589
EdgeConnect [38] 36.419 0.9635 0.441 0.0480

RFRNet [64] 36.485 0.9648 0.401 0.0463
JPGNet [131] 37.646 0.9724 0.353 0.0469
MISF [127] 38.383 0.9735 0.341 0.0330

Ours 38.6705 0.9743 0.3161 0.0286

for training and testing, respectively. For mask settings, we follow prior work [2, 127]

and use irregular masks [15] for CelebA, CelebA-HQ, and Places2. As for Dunhuang

Challenge, we use the officially released masks for testing.

4.3.2 Implementation Details

In the 7-level transformer blocks, the number of Sandwich blocks is sequentially set

to [4,6,6,8,6,6,4] and the attention head in SCAL are [1,2,4,8,4,2,1]. All experiments are

carried out on a single NVidia A100 GPU with a batch size of 4. We adopt the Adam

optimiser [128] with β1 = 0.9, β2 = 0.999. The learning rate is initially set to 1e−4

and is halved at the 75% milestone of the training progress. Compared to the state of

the art in the existing literature [2, 72, 129], our approach is more robust against small

changes in the training procedure, making it more generalizable and easier to deploy. Our

training pipeline does not rely on warm-up step [72], pre-training requirements [129] or

fine-tuning [2].

4.3.3 Comparison with the State of the Art

In assessing our HINT, designed to generate high-quality, fine-grained images, we fol-

low [127] to employ a suite of evaluation metrics: Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity (SSIM), L1 and Perceptual Similarity (LPIPS). These chosen metrics

align with our intent to create a nuanced and comprehensive understanding of the perfor-

mance of models. PSNR and L1 are used to measure pixel-wise reconstruction accuracy,

which reflects the fidelity of the inpainted output. SSIM [86] evaluates structural simi-

larity, ensuring the inpainted segments remain coherent within the image contextually.
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Table 4.2: Number of parameter and inference time

Model Param ×106 Infer. Time/per img

DeepFill v1 [18] 3 7ms
DeepFill v2 [16] 4 10ms
Wavefill [132] 49 70ms
CTSDG [2] 52 20ms
WNet [133] 46 35ms
MISF [127] 26 10ms
MAT [8] 62 70ms
LAMA [7] 51 25ms

Stable Diffusion 860 880ms
LDM [62] 387 6000ms

Repaint [134] 552 250000ms

Ours 139 125ms

Table 4.3: Comparison with diffusion models.

Plces2 PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

LDM [62] 19.6476 0.7052 4.6895 27.3619 0.2675
Stable Diffusion∗ 19.4812 0.7185 4.5729 27.8830 0.2416

Ours 20.8579 0.7227 4.3814 26.7895 0.2102

CelebA-HQ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

RePaint [134] 21.8321 0.7791 3.9427 8.9637 0.1943
Ours 24.1287 0.8241 2.778 7.5793 0.1449

∗: The officially released Stable Diffusion inpainting model
pretrained on high-quality LAION-Aesthetics V2 5+ dataset.
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We also include LPIPS [135], a learned perceptual metric, capable of detecting complex

distortions that mirror human perceptual differences, a crucial attribute when the aim is

to produce high-quality imagery.

We categorise the masks into three groups based on the mask ratio, i.e., small (0.01%-

20%), medium (20%-40%) and large (40%-60%), referring to the extent of missing regions.

Quantitative Results As shown in Tab. 4.11 and Tab. 4.1, HINT achieves a better

overall performance across all datasets and mask ratios than the state of the arts [2,

8, 72, 127, 131, 132]. Compare to the latest transformer-based MAT [8] on CelebA-HQ,

HINT improves PSNR by 5.7%, 3.3% and 3.4% at the increasing mask ratios respectively,

demonstrating that it preserves more high-fidelity details in reconstructed images. In

Places2, compared with the latest high-quality inpainting method MISF [127], HINT

achieves a 12.6%, 13.8% and 7.2% decrease for LPIPS, showcasing its effectiveness in

perceptual recovery. Since the Dunhuang Challenge provides standard masks, we crawled

the benchmark from [127] for comparison. HINT outperforms existing models across all

metrics.

For a comprehensive and robust evaluation, we also compare our model with the

state-of-the-art diffusion model-based methods with large masks, which are well-known

for their prowess in generating high-quality images [136]. Three prominent diffusion

models, LDM [62], Stable Diffusion (SD) and RePaint [134], are chosen for comparison. To

allow for a fair comparison, all experiments are conducted on officially released pretrained

models on the corresponding datasets. It is important to note that SD does not provide

models pretrained on either CelebA-HQ or Places2, so, we chose the LAION v2 5+ pre-

trained model, as its data distribution is similar to that of the Places2 dataset, but it is much

larger and of higher quality. Tab. 4.3 and Tab. 4.2 underscore the superior performance of

our model across all metrics and signify the efficiency in image inpainting tasks. Ideally,

we wish to assess all diffusion model on Places2. However, due to the significant inference

time required by RePaint (Tab. 4.2), a single evaluation on the Places2 dataset for three

mask ratios demands around one GPU-year, making it computationally intractable. As

a result, we chose to evaluate LDM on Places2, given its relatively more manageable

inference time, and focused our analysis of RePaint on the CelebA-HQ dataset.

Qualitative Results We provide the exemplar visual results to further demonstrate
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Input CTSDG [2] MISF [127] HINT (ours) GT

Input JPGNet [131] MISF [127] HINT (ours) GT

Figure 4.6: Comparisons with visualisations (256× 256) showing that our results are
more coherent in structure and sharper in texture and semantic details. The top two
rows are from CelebA-HQ [4] and the bottom two rows are from Places2 [5].
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Masked Input A B C D E Ours

Figure 4.7: Visual results of our ablation studies. A refers to replacing MPD with
conventional PD, B removes the first FFN in “sandwich”, C replaces SCAL with a single
channel-wise self-attention design, D ablates HINT to only include channel self-attention,
a single FFN, and convolutional down-sampling. E replaces our spatial branch with the
basic gated mechanism from [6].

the advantages of HINT over comparators. As shown in Fig. 4.4 and Fig. 4.5, our model

generates high-quality images with more coherent structures and fewer artifacts, such as

roofs and planks. For face restoration, our model better recovers finer-grained details,

such as eye features, compared to the current state of the art [8, 72, 132]. We also provide

qualitative results for CelebA [35] and Dunhuang datasets [36] in Fig. 4.6, Fig. 4.12, and

Fig. 4.13, to indicate our superior performance in global context modelling. The proposed

HINT recovers high-quality faces with clear textures and plausible semantics, even with

a large mask covering almost all facial attributes. The results on Dunhuang show that

our model suppresses the generation of light mottle, and demonstrates the effectiveness

of our model in handling small scratch masks.

Efficiency Comparison Our model uniquely incorporates spatial awareness into

the channel-wise self-attention, a design innovation that maintains linear complexity,

O(C2), with C being the channel number. It manages to strike an impressive balance

between complexity and efficiency. As shown in Tab. 4.2, our model, carrying 139 million

parameters, still situates itself within the parameter counts seen among state-of-the-art

methods. More significantly, our model upholds an inference time of 125ms per image,

ensuring practicality with millisecond-level response time. This efficiency does not come

at the expense of performance since our model outshines competing methods in both

qualitative and quantitative evaluations.

4.3.4 Ablation Study and Parameter Analysis

We conducted a series of ablation experiments on the CelebA-HQ dataset to evaluate the

impact of each proposed component by downgrading them. All models are trained for
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Chapter 4. HighQuality Image Inpainting with Enhanced Transformer

Table 4.5: “Attention-FFN” structure vs. “FFN-Attention-FFN” structure (Sandwich) with
the same number of parameters.

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

SCAL-FFN 34.7272 0.9658 0.4661 1.3716 0.0361 27.0914 0.8893 1.5796 4.7174 0.1050 22.7027 0.7853 3.4185 7.8970 0.1912
Conformer 34.5125 0.9576 0.4729 1.4028 0.3914 26.9672 0.8804 1.6760 4.7597 0.1083 21.2186 0.7218 3.6829 8.9506 0.2147

Thin-Sandwich (Ours) 34.7843 0.9661 0.4614 1.3697 0.0357 27.1070 0.8911 1.5763 4.6993 0.1047 22.7075 0.7872 3.4077 7.8863 0.1908

Table 4.6: Ablation study of using 1× 1 convolution after the last skip connection.

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

w 1× 1 conv 34.5246 0.9646 0.4780 1.3693 0.0386 26.8984 0.8863 1.6267 4.7131 0.1101 22.4694 0.7792 3.5434 7.9647 0.1997
w/o 1× 1 conv (Ours) 35.0436 0.9671 0.4489 1.3542 0.0345 27.2954 0.8924 1.5363 4.6891 0.1016 22.8473 0.7895 3.3403 7.8697 0.1867

Figure 4.8: Visual results of the variants of sandwich.
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Table 4.7: Different kernal size in the embedding layer.

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

7× 7 emb 34.6389 0.9657 0.4681 1.4034 0.0366 27.0422 0.8905 1.5803 4.9783 0.1043 22.6667 0.7865 3.3950 7.9168 0.1898
3× 3 emb (Ours) 35.0436 0.9671 0.4489 1.3542 0.0345 27.2954 0.8924 1.5363 4.6491 0.1016 22.8473 0.7895 3.3403 7.8697 0.1867

Table 4.8: Comparison of alterantive design of mask-aware pixel-shuffle down-sampling

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

CD 34.3159 0.9641 0.4842 1.4875 0.0380 26.6809 0.8846 1.6499 4.9362 0.1088 22.2408 0.7761 3.5828 8.2493 0.1979
PD 34.5229 0.9647 0.4787 1.3729 0.0393 26.8446 0.8865 1.6328 4.8756 0.1116 22.4448 0.7795 3.5466 8.0196 0.2023

MPD (Ours) 34.5820 0.9649 0.4733 1.3542 0.0375 26.9327 0.8867 1.6089 4.6891 0.1085 22.4769 0.7812 3.5001 7.8697 0.1972

30,000 iterations. Our quantitative comparison results, which are presented in Tab. 4.12,

demonstrate the effectiveness of our key contributions. “U-Net w self-attention” (model

D) is the variant in which we ablate HINT to only include channel self-attention [10], a

single FFN, and convolutional down-sampling. We also present visual results for a more

intuitive demonstration in Fig. 4.7.

Spatially-activatedChannelAttention LayerOur proposed SCAL captures channel-

wise long-range dependencies while complementing the spatial attention in an efficient

manner. We suggest that introducing the spatial attention identifies “where” the impor-

tant regions are. As illustrated in Fig. 4.7 (model C), after removing the spatial attention,

the model is not confident enough to determine if an eye is missing on the left, thus

generating a very blurry left eye. We substituted our spatial branch with the basic gated

mechanism from [6] (model E) to evaluate our superiority. In Tab. 4.10, we replace

the spatial branch with traditional spatial self-attention (SSA), denoted as ‘w SSA’, to

evaluate our efficiency. However, due to the significant computational cost of SSA, we

have to resize the image to 64× 64 to train on a single A100. For a fair comparison, all

experiments in Tab. 4.10 are conducted on 64× 64 images. We notice that the significant

computational cost of SSA does not bring better performance, which is reflected in the

ambiguous features with the blur texture (shown in Fig. 4.9).

Mask-aware Pixel-shuffle Down-sampling Our novel downsampling method

based on pixel shuffling maintains a consistent flow of valid information within the

transformer. First, to demonstrate the feasibility of pixel-shuffle down-sampling, we

compare the performance of convolutional downsampling, conventional PD and the

proposed MPD on the baseline. We ablate all proposed designs to build the baseline,
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Table 4.9: Hyper-parameter tuning on the weights associated with different losses.

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

Sample A 34.6959 0.9581 0.4417 1.3143 0.0355 26.8916 0.8358 1.6470 4.8173 0.1073 22.7519 0.7850 3.4011 7.9715 0.1902
Sample B 33.5762 0.9233 0.4256 1.0158 0.0384 26.3527 0.8657 1.5419 4.9836 0.1216 22.4893 0.7754 3.4581 8.0381 0.1972

Sample C (ours) 35.0436 0.9671 0.4489 1.3542 0.0345 27.2954 0.8924 1.5363 4.6891 0.1016 22.8473 0.7895 3.3403 7.8697 0.1867

Table 4.10: Ablation study of using traditional spatial self-attention in the SCAL on the
64× 64 resolution.

Model 0.01%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

w SSA 34.4915 0.9515 0.6812 1.5641 0.0295 26.2375 0.8726 2.3536 5.0318 0.0720 21.3534 0.7726 4.3687 8.4753 0.1312
SCAL (Ours) 34.5849 0.9538 0.6715 1.5119 0.0271 26.3195 0.8781 2.2328 4.9513 0.0707 21.5242 0.7774 4.2918 8.4518 0.1312

Figure 4.9: Visual results of the variants of SCAL.
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including the “Attention-FFN” structure, single channel-wise self-attention branch, and

conventional PD. As shown in Tab. 4.8, directly using conventional PD provides an overall

improvement compared to convolutional down-sampling, but leads to a decline in LPIPS.

We attribute this degradation to the incoherence of invalid information, which causes

inaccurate transfer of high-level feature representations. MPD solves this problem and

improves LPIPS significantly. Correspondingly, in Tab. 4.12, the performance of HINT

suffers the largest drop when we replace the MPD with conventional PD. As shown in

Fig. 4.7 (model A), the facial attributes are severely drifting when MPD is removed.

Sandwich-shaped Transformer BlockWe introduce an FFN-SCAL-FFN block to

effectivelymanage the limited flow of information. As evidenced by the results in Tab. 4.12,

removing the first FFN in the sandwich leads to a notable decrease across all four metrics.

In Fig. 4.7 (model B), the model fails to learn a good enough feature representation of

the eyeball and nose, resulting in unclear textures for the generated left eye and nose.

Furthermore, to confirm that the effectiveness of the proposed Sandwich Network is

not merely attributed to an increase in the number of parameters, we implemented a

lightweight variant that diminishes the parameter count in both Feedforward Neural

Networks (FFNs) by 50%. This thin “Sandwich” configuration possesses an equivalent

number of parameters as the “Attention-FFN” architecture. Furthermore, we substituted

our “FFN-SCAL-FFN” with the Conformer structure (FFN-Attention-CONV-FFN) [126]

to evaluate our superiority. As shown in Fig. 4.8, the proposed Thin-Sandwich helps

the model to learn a better feature representation of the eyeball and mouth to provide

clearer texture details. Although Conformer also has a “sandwich” structure, it moves the

convolutional layer that can extract local spatial feature behind the attention. Therefore, it

does not embed good enough features for the following attention layer, making it difficult

to generate clear texture and structure in the generated area. As shown in Table 4.5, the

experimental results substantiate that, given an equal parameter quantity, the Sandwich

module enhances the overall performance of the model.

Decision for the Last Skip Connection To harness the low-level texture and

structural features derived from the encoder, we refrain from utilising 1× 1 convolution

for modulating the number of channels post the last skip connection. The contrast

between the two strategies is enumerated in Tab. 4.6.
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Embedding Layer In the embedding layer, we adopt a gated convolutional layer

with padding to embed the input without downsampling. In contrast to prior works using

7× 7 convolutional layers to project the input [2, 38, 127], a smaller kernel size (3× 3) is

employed in our embedding layer to obtain more fine-grained features. As illustrated in

Table 4.7, the smaller kernel gains better performance.

Parameter Tuning To tune HINT, we employ Optuna [107] to identify the best set

of hyper-parameters in terms of different values of weights of our loss components. The

top three sets of combinations are λi: sample A [1,1,0.5,2], sample B [1,60,1,2], sample

C [1,250,0.1,0.001], as shown in Tab. 4.9. We implement the sample C for all of the

experiments.

4.4 Conclusion and Discussions

We propose HINT, an end-to-end Transformer for image inpainting with the proposed

MPD module to ensure information remains intact and consistent throughout the encod-

ing process. The MPD is a plug-and-play module, which is easy to adopt to the other

multimedia tasks that require masking process, such as video edit, and animation edit.

Our SCAL, enhanced by the proposed “sandwich” module, captures long-range depen-

dencies while remaining spatial awareness, to boosting the capacity of representation

learning in a cheap approach, which could potentially benefit multimedia tasks that are

based on channel self-attention.

The proposed components contribute to each other and drive HINT to recover high-

quality completed images. Experimental results demonstrate that HINT overall surpasses

the current state of the art on four datasets [4,5,35,36], with particularly notable improve-

ments observed on facial datasets [4, 35]. Extensive qualitative evaluations demonstrate

the superior image quality achieved by our framework.

As a direction of future research, HINT can be improved by employing geometric

information [38, 137] by simply adding an indicator or incorporating a multi-task ar-

chitecture, to get better structural consistency. Furthermore, considering the success of

existing work [138], HINT can be potentially upgraded to a text-guided image inpainting

system by introducing the pre-trained multi-model features to interpret the text feature

75



4.4. Conclusion and Discussions

into the latent space.

Furthermore, unlike existing multi-step approaches [8, 72, 73], as HINT is already

able to recover high-quality completed images without requiring additional refinement

process, a second stage of reconstruction could further enhance the quality of the results.

Constrained by the current limited computing resources, we will implement another

refinement network in the second step, utilising the results from HINT as inputs and

fine-tuning them in the same scale. Two networks are trained separately, thereby avoiding

the large number of parameters introduced by joint training.
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CHAPTER 5

Long-Range Dependency Capture and Pixel-Level Sequential

Modelling

Portions of this chapter have previously been published in the following peer-reviewed

publications:

• Shuang Chen, Amir Atapour-Abarghouei, Haozheng Zhang, Hubert P. H. Shum,

“M × TMamba × Transformer for Image Inpainting”, In the 2024 British Machine

Vision Conference (BMVC). 2024.

• Shuang Chen, Haozheng Zhang, Amir Atapour-Abarghouei, Hubert P. H. Shum,

“SEM-Net: Efficient Pixel Modelling for Image Inpainting with Spatially Enhanced

SSM”, In the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision

(WACV). IEEE, 2025.

Image inpainting, or image completion, is a crucial task in computer vision that aims

to restore missing or damaged regions of images with semantically coherent content. This

technique requires a precise balance of local texture replication and global contextual

understanding to ensure the restored image integrates seamlessly with its surround-

ings. Traditional methods using Convolutional Neural Networks (CNNs) are effective

at capturing local patterns but often struggle with broader contextual relationships due
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5.1. Introduction

to the limited receptive fields. Recent advancements have incorporated transformers,

leveraging their ability to understand global interactions. However, these methods strug-

gle to maintain fine-grained details and face computational inefficiencies, which limit

the ability to capture long-range dependencies. To overcome these challenges, in this

chapter, we introduce M × T and SEM. M × T is composed of the proposed Hybrid

Module (HM), which combines Mamba with the transformer in a synergistic manner,

given the observation of that, Mamba is adept at efficiently processing long sequences

with linear computational costs, making it an ideal complement to the transformer for

handling long-scale data interactions. SEM is a novel visual State Space model (SSM)

vision network, modelling corrupted images at the pixel level while capturing long-range

dependencies (LRDs) in state space, achieving a linear computational complexity. Such

SEM is able to address the inherent lack of spatial awareness in SSM. We evaluate both

M × T and SEM on the widely-used CelebA-HQ and Places2-standard datasets, where

they consistently outperformed existing state-of-the-art methods.

5.1 Introduction

Convolutional Neural Networks (CNNs) have been employed for image inpainting, cap-

italizing on their ability to capture local patterns and textures. However, CNNs-based

methods are inherently limited by the slow-grown receptive field, which limits the ability

to grasp broader image context [8, 10]. To solve this issue, recent advancements [8, 58]

have seen the integration of transformer or self-attention into image inpainting, lever-

aging their capability to capture global correlations across entire images. However,

transformer-based methods are often constrained by quadratic computational complexity,

prompting most methods to process images in smaller patches to reduce the spatial

dimension [72, 73], to learn the interaction in patch-level. This patch-based approach

hinders the learning of fine-grained details, often resulting in artifacts in the generated

images.

Mamba [34], merging from the domain of long-sequence modelling, offers promising

advantages for handling long sequential data and capturing long-range dependency

efficiently, all at a linear computational cost. This capability makes Mamba particu-
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Sa
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Input LAMA [7] MAT [8] M-Unet SEM-Net GT

Figure 5.1: Comparisons with the state-of-the-art CNN-based method [7] and
transformer-based method [8]. M-Unet is a variant of directly applying the Mamba
model [9] followed by a feedforward network [10] in a U-Net. Red boxes and arrows
highlight major differences. Our SEM-Net demonstrates the strong capability to capture
LRDs visualised by the consistent eye colors and patterns, and addresses the challenge
of lack of spatial awareness in M-Unet. Please refer to the supplementary material for
more quantitative results.

larly suitable for globally learning interactions at the pixel level, thus complementing

transformers by adding detailed context.

We observe that, Mamba and transformer exhibit complementary strengths: Mamba is

good at learning long-range pixel-wise dependency, which is computationally expensive

for the transformer. Conversely, transformer is good at capturing global interactions

between localized patches, such spatial awareness is an area that Mamba lacks due to it

being designed for sequence modelling. Based on this observation, we proposeM × T ,

consisting of proposed Hybrid Modules that synergistically combine the strengths of both

transformer and Mamba. This novel approach allows for dual-level interaction learning

from the patch level and pixel level.

Apart from introduce extra spatial information to SSM by using transformer, is there

another way to enhance SSM in spatial awareness? Our hypothesis is that, as SSM is

good at capturing long-range dependencies, it should be able to learn more plausible

spatial associations with a proper strategy for modeling the visual data. Such hypothesis

is proposed from the visualisation in Fig 5.1: The prominent CNN-based method [7] and

transformer-based method [8] (Sample I of Fig. 5.1) struggle in learning consistent the eye

colours and patterns, where the visible red eye fails to guide the accurate reconstruction

of the other eye. Although, directly adopting SSM [9] (M-Unet) captures LRDs effectively

and achieves more consistent eye colour, it lacks 2D spatial awareness, making the way

to model pixels in SSM crucial. This is because the vanilla SSM scans the data as a
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5.1. Introduction

sequence with a single fixed direction. As illustrated in Sample II of Fig. 5.1, a vanilla

SSM model [9] shows positional drifting of the inpainted left eye (upper than the right

eye). This insight introduces two key challenges: (i) how to maintain the continuity and

consistency of pixel adjacency for pixel-level dependencies learning while processing

the SSM recurrence; and (ii) how to effectively integrate 2D spatial awareness to the

predominant linear recurrent-based SSMs.

To solve these challenges, we propose SEM-Net: Spatially-Enhanced SSM Network

for image inpainting, which is a simple yet effective encoder-decoder architecture incor-

porating four-stage Snake Mamba Blocks (SMB). The proposed SMB is assembled by two

novel modules, which holistically integrate local and global spatial awareness into the

model. Specifically, we introduce the Snake Bi-Directional Modelling module (SBDM) in

place of vanilla SSM. It brings the crucial spatial context into a linear recurrent system,

modelling images in two directions by consistently scanning each pixel with a snake

shape. Moreover, we explicitly incorporate positional embedding into the sequences via a

Position Enhancement Layer (PE layer) to strengthen the long-range positional awareness

and improve the sensitivity to specific parts of the sequence(e.g., masked regions). We

further propose Spatially- Enhanced Feedforward Network (SEFN) to complement the

local spatial dependencies. aiming to leverage spatial information stored in the feature

before SBDM, to refine the feature after SBDM with a gating mechanism.

Comparative experiments show that SEM-Net outperforms state-of-the-art approaches

across two distinct datasets, i.e, CelebA-HQ [4] and Places2 [5]. Detailed qualitative com-

parison demonstrates that our method achieves a significant improvement in capturing

spatial LRDs while preserving better spatial structure. In addition, SEM-Net achieves

state-of-the-art performance on two motion-deblurring datasets, further demonstrating

our method’s generalisability in image representation learning.

Our main contributions are summarised as follows:

• We proposeM × T , to introduce Mamba combined with transformer focused for

image inpainting.

• InM × T , we design a novel Hybrid Module to capture the feature interaction at

both the pixel level an patch level.
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Chapter 5. Long-Range Dependency Capture and Pixel-Level Sequential Modelling

• We propose a novel U-shaped Spatially-Enhanced SSM architecture focused on

capturing short- and long-range spatial dependencies in image inpainting.

• We propose a Snake Mamba Block (SMB), involving a Snake Bi-Directional Mod-

elling (SBDM) module and a Position Enhancement Layer (PE layer), to implicitly

integrate crucial spatial context awareness into a linear recurrent SSM, and explic-

itly enhance the long-range positional awareness.

• We propose a Spatially-Enhanced Feedforward Network (SEFN) to complement

local spatial dependencies learning among pixels, enhancing the spatial awareness

throughout image representation learning.

• BothM × T and SEM suppress the state-of-the-art methods on both CelebA-HQ

and Places2 dataset.

• BothM×T and SEM are able to adapt to high-resolution images with only training

on low-resolution data.

5.2 Mamba × Transformer

The overall pipeline of the proposedM × T is illustrated in Fig. 5.2, which is a U-Net

shape architecture formed with 7 Hybrid Blocks. Formally, the masked image Imasked ∈

RH×W ×3 concatenated with a mask M ∈ RH×W ×1 as the input Iin. We first use an

overlapped convolution to embed Iin, then feed into the following 7 Hybrid Blocks with 3

times downsampling and 3 times upsampling. At the end, one convolution layer projects

the final output Iout. Each Hybrid Block consists of n Hybrid Modules, as shown in

Fig. 5.2 (b), each Hybrid Module has a Transformer block, a Mamba block and a Context

Broadcasting Feedforward Network (CBFN), which will be detailed in section 5.2.1.

5.2.1 Hybrid Module

Each of the seven HybridModules involves a pair of SRSA (Spatial Reduced Self-Attention)

and Mamba modules for capturing long-range dependency, followed by a Context Broad-

casting Feedforward Network (CBFN) to enhance the local context and control data flow
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5.2. Mamba × Transformer

Figure 5.2: (a) The architecture overview of the proposedM × T . (b) The Hybrid Block
is composed of n proposed Hybrid Modules. (c) The proposed Hybrid Module, consisted
of a Mamba Block, a Spatial Reduced Self-Attention and a Context Broadcasting Feed-
forward Network. (d) The Spatial Reduced Self-Attention provides spatial awareness.
(e) The Mamba Block captures pixel-level interaction. (f) The Context Broadcasting
Feed-forward Network transfers the features.

consistency.

Spatial Reduced Self-Attention.

We introduce the Spatial Reduced Self-Attention (SRSA) module, designed to leverage

the capability of the transformer for capturing global correlation while enriching local

context detail. Reduced self-attention means that the attention operation is computed on a

compressed set of tokens and channels rather than the fullH×W feature map. Concretely,

we form queries at the native resolution but build keys/values from a downsampled

feature map (strided convolution or pooling with factor s), and we bottleneck theQ/K/V

channels by a ratio r (i.e., C → C/r). Optionally, keys/values are further windowed to

the masked neighborhood (local attention) instead of the whole image. This changes the

complexity from O
(
(HW )2

)
to O

(
HW ·HW/s2

)
(with an additional 1/r factor from

channel reduction), and proportionally lowers memory.

Specifically, given a input feature F , we first apply layer normalisation followed by a

1× 1 convolution and a 3× 3 depth-wise convolution to extract the local features:

F ′ = DConv3×3(Conv1×1(LayerNorm(F ))). (5.1)
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Chapter 5. Long-Range Dependency Capture and Pixel-Level Sequential Modelling

The feature F ′ is then split along the channel dimensions to form the Query Q, Key

K and Value V . To address the traditional quadratic computational complexity of self-

attention, we share the idea with PVTv2 [139] to adopt average pooling forK and V to a

fixed dimension.
K ′, V ′ = AvgPool(K), AvgPool(V ),

Att = softmax(K ′ ·Q),
(5.2)

where Att is the attention map. In this work, the spatial dimension is reduced to 8. After

multiplying Att and V ′, we get the initial output F ′′. To further enhance local context,

we incorporate a Local Enhancement operation LE(V ) as proposed in [140], which is

implemented using a 3 × 3 depth-wise convolution, to effectively balances capturing

extensive global interactions with detailed local features. After an element-wise addition,

the final output of SRSA is:

LE(V ) = DConv3×3(V ),

Outputsrsa = LE(V ) + Att · V ′.
(5.3)

Mamba with Positional Embedding

Mamba showcases a strong capacity to handle long sequence data with linear com-

putational complexity, making it highly effective for modelling interactions between

adjacent pixels. In this work, we propose leveraging the Mamba module to modelling

the flattened feature, thereby capturing long-range dependency at the pixel level, which

is expensive to capture by self-attention. To adapt Mamba more aptly for vision tasks

and enhance its ability to maintain positional awareness, we incorporate positional em-

bedding into the module. Within the Mamba module, given an input feature F with the

shape of (B,C,H,W ), the process begins by flatting and transposing it to (B,C, L),

where L = H ×W :

F ′ = transpose(reshape(F, (B,C, L))). (5.4)
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Subsequently, we introduce cosine positional embedding [68] to the transformed feature,

enhancing the capacity to maintain positional awareness:

F ′′ = F ′ + PE(L). (5.5)

After applying layer normalisation, mamba implements a gated mechanism to further

refine the feature representation. The body branch involves a linear layer, a SiLU activa-

tion function [118], 1D convolutional layer and the SSM (State Space Sequence Models)

layer.

Fbody = SSM(Conv1D(SiLU(Linear(F ′′)))) (5.6)

The gate branch involves a linear layer and a SiLU activation function [118]. After the

gate branch re-weight the body branch, the output will be reshaped to the shape of

(B,C,H,W ):

G = SiLU(Linear(F ′′)),

Fgated = G · Fbody,

Outputmamba = reshape(Fgated, (B,C,H,W )),

(5.7)

where G is the gate matrix, Fgated is the output from gate mechanism, Outputmamba is

the final output from Mamba module.

Context Broadcasting Feed-forward Network.

We propose Context Broadcasting Feedforward Network (CBFN) by improving the Gated-

Dconv Feed-Forward Network (GDFN) [10]. The GDFN is recognised for its efficacy in

enhancing local context through a gated mechanism with depth-wise convolution. To

build upon this, our CBFN integrates a global processing stage post-GDFN. Specifically,

we implement global average pooling followed by channel-wise averaging to obtain the

overall mean value of the input feature F , denoted as µ = GlobalAvgPool(F ), where F

is the output from GDFN. This µ is then broadcast to the dimensions of F and added to
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Figure 5.3: (a) Architecture overview of the proposed SEM-Net with multi-scale SEM
blocks. (b) The details in each SEM block with core designs in SMB and SEFN, which
holistically enhance the spatial awareness and improve the capability to capture LRDs.

it. The output of CBFN is represented as F ′:

F ′ = F + broadcast(µ). (5.8)

This global processing is designed to facilitate the learning of dense interactions

within the self-attention layers [141], thereby enhancing the effectiveness of the Hybrid

Module.

5.2.2 Loss Functions

To achieve superior inpainting outcomes, we adopt a multi-component loss strategy as

delineated in the previous research [38, 58, 127]. This strategy includes an L1 loss, a

style loss Lstyle, a perceptual loss Lperc and an adversarial loss Ladv. The composite loss

function is formulated as:

Lall(Iout, Igt) = α1L1 + α2Lstyle + α3Lperc + α4Ladv, (5.9)

where Iout and Igt are the reconstructed image and ground truth, respectively. α1=1,

α2=250, α3=0.1, and α4=0.001 are the weighting factors for each component.

5.3 Spatially-Enhanced Mamba Network

Given an image I with pixels x̂1, x̂2, ..., x̂N×N in N ×N resolution. Image inpainting is

a task for learning the mapping from the input masked image Iin = concat[I ⊙M,M ] to

the semantically accurate output image Iout, whereM is the mask. The overall pipeline
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of the proposed SEM-Net is illustrated in Fig. 5.3. Our framework comprises two key

components to address the two identified challenges in a synergistic manner. The first

component, a SnakeMamba Block (Sec. 5.3.1), aims at effectively preserving the continuity

and consistency of pixel adjacency for pixel-level dependency learning during the linear

recurrence in SSMs. The second component, a Spatially-Enhanced Feedforward Network

(Sec. 5.3.2), is proposed to further complement the 2D spatial awareness of the 1D linear

recurrent based SSMs.

Our SEM-Net adopts the encoder-decoder based U-Net architecture formed with four-

stage SEM blocks to learn hierarchical multi-scale representation. Given a masked image

Iin ∈ RH×W ×3, where H ×W is spatial dimension and 3 denotes the RGB channels.

SEM-Net first employs a 3 × 3 convolution to extract low-level feature embedding

h0 ∈ RH×W ×C . Then, these features h0 pass through the four-scale encoder SEM

blocks, which gradually decrease in spatial size while increasing in channel capacity, to

generate latent features hl ∈ RH
8 × W

8 ×8C . Next, the decoder takes hl to progressively

reconstruct high-resolution representations. Every stage contains multiple SEM blocks,

each SEM block has a pair of proposed Snake Mamba Block (SMB) and Spatially-Enhanced

Feedforward Network (SEFN) for refining image representation learning while effectively

capturing spatial LRDs. During this process, we use skip connections to linkmirrored SEM

blocks at the end of each stage and use a 1× 1 convolution to half the channels after each

connection, preserving the shared features learned by the encoder and then supporting

the decoder. The cost-efficient pixel-unshuffle and pixel-shuffle operations [120] are

employed to achieve feature downsampling and upsampling, respectively. In the final

step, a convolutional layer projects the decoded features to the output.

5.3.1 Snake Mamba Block

In each snakemamba block (SMB), we propose a holistic framework to preserve continuity

and ensure the comprehensiveness of pixel adjacency for pixel-level dependency learning

during 1D linear recurrence in SSMs. This is achieved through two novel designs: the

implicit Snake Bi-Directional Modelling (SBDM) and the explicit Position Enhancement

Layer (PE layer).
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Figure 5.4: The architecture of proposed SMB. The input feature ismodelled to sequences
in two directions with snake-like traverses in SBDM-Sequential, enhancing the spatial
awareness implicitly. Then, the PE layer explicitly enhances the long-range positional
awareness through positional embeddings. The features after Mamba are restructured
and aggregated by SBDM-Fusion to generate the output.

Snake Bi-Directional Modelling

Directly leveraging the predominant 1D linear SSMs by feeding the flattened spatial fea-

tures is prone to an inevitable loss of pixel adjacency continuity and spatial information,

resulting in a degradation in image representation learning. To alleviate this challenge,

SBDM mainly contains two sequence modelling techniques: snake-like sequence mod-

elling and bi-directional sequence modelling.

Snake-like Sequence Modelling

Snake-like sequence modelling aims to maintain the continuity in pixel adjacency when

flattening spatial features across each channel from a shape of H ×W to 1×HW . This

is crucial as we observe that the conventional flattening operation directly connects the

end of one row to the start of the next, forcing SSMs to recognise recurrent connections

between spatially distant pixels rather than adjacent ones, leading to a loss of pixel

adjacency continuity and constrains the dependency-reasoning capacity. To address

this issue, our snake-like sequence modelling ensures consistent connections among

neighbouring pixels both within and across rows by reordering pixels and concatenating

rows, illustrated by the red arrows in Fig. 5.4.

Specifically, given an input feature hin ∈ RH×W ×C , where H is the number of rows

(lines),W is the number of columns (pixels in a line), and C is the dimension for each

pixel. pi,j ∈ R1×1×C denotes the pixel value at the position of i-th row and j-th column.
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Then, the horizontal snake-like sequence modelling process is represented as:

Si =


[pi,0, pi,1, . . . , pi,W −1] , i = 0, 2, 4, . . . ,

[pi,W −1, pi,W −2, . . . , pi,0] , i = 1, 3, 5, . . . ,
(5.10)

S = concat[S0, S1, S2, S3, . . . , SH−1], (5.11)

where the 1D sequence S maintains the pixel adjacency continuity by concatenating the

sequences Si for i ∈ [0, H − 1], each Si represents the reordered pixel position in that

row.

Bi-directional Sequence Modelling

To further complement the comprehensiveness of pixel adjacency and implicitly en-

hance spatial awareness, we propose a bi-directional sequence modelling involving two

processes: SBDM-Sequential (SBDM-S) and SBDM-Fusion (SBDM-F). As shown in 5.4,

SBDM-S simultaneously traverse pixels in a snake-like manner in two directions: hor-

izontally and vertically across all pixels, enabling the SMB to generate sequences that

capture discriminative dependencies. Specifically, in a snake-like manner, SBDM-S verti-

cally traverses pixels to 1-D sequences S = concat[S0, S1, . . . , SH−1], and horizontally

traverses pixels to 1-D sequences T = concat[S⊤
0 , S

⊤
1 , . . . , S

⊤
W −1], where each S⊤

j for

j ∈ [0,W − 1] contains reordered pixels in that column. These two directions are de-

signed since they are spatially complementary to each other and are computationally

efficient in multi-directional traversals. After processing through Mamba, SBDM-F re-

structures the 1D sequences back to 2D via the inverse function of Eq. 5.11 and fuse them

by element-wise aggregation to retain their spatial information, enriching the spatial

awareness in image representation learning.

Position Enhancement Layer

To further explicitly complement the implicit approach of SBDM in enhancing spatial

dependency reasoning, we propose a simple yet effective strategy of integrating 1D

positional embeddings to enhance position awareness. Specifically, we incorporate the
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Figure 5.5: The architecture of proposed Spatially-Enhanced Feedforward Network
(SEFN)

1D positional embeddings directly into 1D sequences in the position enhancement layer

(PE layer) before processing with Mamba, assigning absolute positional information to

each element within the sequences for providing the positional context and maintaining

the pixel adjacency relationships. Formally, assume S(n) for n ∈ [0, N2 − 1] ∩ Z is

the element at positional coordinate n, PE(n) is the corresponding cosine positional

embedding [68]. Then, the elements in 1D sequence S with 1D positional embeddings

S̄(n) are integrated by aggregation:

S̄(n) = S(n) + PE(n), n = 0, 1, 2, 3, . . . , N2 − 1. (5.12)

5.3.2 Spatially-Enhanced Feedforward Network

To complement local spatial information in regions spanning multiple rows and columns

that are subject to inherent design limitations of SSMs, we propose a Spatially-Enhanced

Feedforward Network (SEFN) for refining spatial awareness in image representation

learning. The key idea of SEFN lies in leveraging spatial information extracted from

the feature representations prior to the SEM block, subsequently applying it in a gating

mechanism to inform the features post-SMB, thereby facilitating the integration of spatial

awareness and LRDs learning to the entire SEM block.

Specifically, SEFN first snatches hbefore and hafter at the entrance and exit of the

Mamba block. Then, SEFN uses the average pooling to expand the receptive field, followed

by two {Conv-LN -ReLU } blocks to capture a broader spatial perception. The subsequent

upsampling yields a spatial awareness indicator γ preserving spatial relationships from
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hbefore. The gating mechanism starts from hafter, which is divided into h′
after and h′′

after.

The h′
after is informed by γ to form a ‘gate’ via a linear transformation and a GELU non-

linear activation. ‘gate’ then modulates h′′
after through a point-wise product, significantly

enhancing the spatial awareness of h′′
after. The whole process is formulated as:

h′
after = Wd3W1LN(hafter), (5.13)

h′′
after = W ′

d3W
′
1LN(hafter), (5.14)

γ = Up(f(AveragePooling(hbefore))), (5.15)

gate = GELU(Wd3W1γ||h′
after), (5.16)

output = gate⊙ h′′
after, (5.17)

whereW1,W ′
1 are 1× 1 convolutions,Wd3,W ′

d3 are 3× 3 depth-wise convolutions to

reduce computational cost while refining features, LN is a layer normalization, f denotes

two {Conv-LN -ReLU } blocks, Up is upsampling.

5.3.3 Loss Function

To achieve superior inpainting outcomes, we optimize our SEM-Net with the loss combi-

nation of Ltotal = λ1L1 +λ2Lstyle +λ3Lperc +λ4Ladv , where λ1 = 1, λ2 = 250, λ3 = 0.1, λ4

= 0.001. L1 is the pixel-wise reconstruction loss, Lstyle is style loss, Lperc is the perceptual

loss, and Ladv is the adversarial loss. We define the Igt as the ground truth, Iout is the

completed image, G is the SEM-Net andD is the discriminator. The formulation for each

loss is shown below:

L1 = E
[
∥Iout − Igt∥1

]
, (5.18)

Lperc = E
[∑

i

∥ϕi (Iout)− ϕi (Igt)∥1

]
, (5.19)

Lstyle = E
[∑

i

∥(ψi (Iout)− ψi (Igt))∥1

]
, (5.20)

Ladv = min
G

max
D

EIgt [logD (Igt)] + EIout log [1−D (Iout)] , (5.21)
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where ϕi(·) indicates the activation map from the i-th pooling layer of VGG-16. ψi(·) =

ϕi(·)Tϕi(·) denotes the Gram matrix. The loss combination of Ltotal = λ1L1 + λ2Lstyle +

λ3Lperc + λ4Ladv, where λ1 = 1, λ2 = 250, λ3 = 0.1, λ4 = 0.001.

5.4 Experiment Results

5.4.1 Datasets

We evaluate M × T and SEM on two diverse datasets, CelebA-HQ [4] and Places2-

standard [5], to ensure a comprehensive comparison. CelebA-HQ is a dataset consisting

of high-quality human face images. For CelebA-HQ, we train our model on the first

28000 images and reserve the remaining 2000 for testing. Places2 comprises a wide range

of natural and indoor scene images. For Places2, we employ the standard training set,

which includes 1.8 million images, and test on its validation set of 30000 images. We

follow [2, 58, 127] to conduct all experiments with the widely used irregular mask [15] in

three mask ratios.

5.4.2 Implementation Details

Except where specified differently, all experiments are conducted on a single Nvidia A100

GPU. We adopt the following set of parameters for our experiments: a batch size of 6 and

a patch size of 256× 256. We use Adam (β1 = 0.9, β2 = 0.999) optimizer with learning

rate = 1e−4.

5.4.3 Baselines and Metrics

We choose the following baselines for inpainting comparison: CNN-based methods

with DeepFill v1 [18], DeepFill v2 [16], CTSDG [2] and MISF [127], WaveFill [132] and

LAMA [7]; Transformer-based methods withMAT [8] and CMT [142]; Expensive diffusion

models [62, 134]. Italic denotes the SOTA methods.
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5.4.4 Comparison with State of the Art

Quantitative Comparison

For a fair comparison, we employ the officially released models and test them with the

same test sets and masks. As shown in table 5.6, M × T and SEM outperforms in all

metrics across different mask ratios. Especially on CelebA-HQ, at the increasing mask

ratios,M × T improves PSNR by 2.0%, 2.3% and 1.8% respectively, and decreases LPIPS

by 12.3%, 11.6% and 10.5% respectively. As a more advanced model, SEM-Net achieves (i)

a substantial gain of 0.7743 (2.15%↑), 0.7187 (2.55%↑), and 0.5386 (2.25%↑) PSNR; (ii) and

a significant reduction of 0.0192 (5.14%↓), 0.074 (5.72%↓), and 0.1636 (5.84%↓) L1, over

the second methods [7, 142] on three mask ratios, respectively. The improvements in

these two specific metrics indicate a significant boost in the pixel-wise reconstruction

accuracy. In addition, the LPIPS of SEM-Net appreciably drops than the second-best

method [142] in CelebA-HQ dataset by 0.0035 (13.41%↓), 0.0101 (12.36%↓), and 0.0199

(12.70%↓) on three mask ratios, respectively. It demonstrates a significant improvement

in high-quality image inpainting with lower perceptual differences.

Qualitative Comparison

The qualitative results ofM × T and SEM-Net are shown in Fig. 5.9 and Fig. 5.9. Each

sample is the inpainted result where the mask ratio exceeds 40%, to more intuitively

demonstrate the advantages of our methods in handling challenging cases.

In Fig. 5.9, for human face samples,M × T maintains consistency from the visible

regions to the missing regions, such as effectively reconstructing elements like a missing

hat. Additionally,M × T renders features like eyes with improved fine-grained details,

showcasing its strong capability in learning complex representations. In the Places2

dataset,M ×T effectively captures the spatial layouts in indoor environments and excels

at maintaining the architectural integrity of the road surfaces. Such examples highlight

ourM × T has superior spatial perceptions.

In Fig. 5.9, for facial inpainting, generating one eye in masked regions (masked eye)

based on another eye in visible regions (visible eye) is more challenging than directly

generating two eyes, because it requires the model to have a solid ability to capture long-
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Table 5.1: Ablation studies forM×T of each component in 40% - 60 %. MB is theMamba
Block with positonal embedding. SRSA is the Spatial Reduced Self-Attention. GDFN
is the feed-forward network in [10]. CBFN is the Context Broadcasting Feed-forward
Network. OurM × T corresponds to configuration (e).

Components 40%-60%

MB SRSA GDFN [10] CBFN PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓
(a) 21.6134 0.7308 4.1254 8.1732 0.2464
(b) ✓ ✓ 21.8573 0.7614 3.8649 8.0315 0.2197
(c) ✓ ✓ 21.8914 0.7682 3.8587 7.9974 0.2157
(d) ✓ ✓ ✓ 22.1377 0.7687 3.7679 7.9910 0.2067
(e) ✓ ✓ ✓ 22.1704 0.7699 3.6337 7.9905 0.2053

Table 5.2: Ablation studies of each component in 40% − 60% mask ratio. Refer to
supplementary material for all mask ratios. Our SEM-Net corresponds to configuration
(g)

Net Components 40%-60%

MB FN [10] SEFN SBDM PE PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓
(a) 21.6134 0.7308 4.1254 8.1732 0.2464
(b) ✓ ✓ 21.7828 0.7587 3.9117 8.0742 0.2227
(c) ✓ ✓ 22.0510 0.7682 3.7649 7.9871 0.2132
(d) ✓ ✓ ✓ 21.9064 0.7653 3.7679 8.0214 0.2102
(e) ✓ ✓ ✓ 22.0926 0.7692 3.7634 7.9174 0.2091
(f) ✓ ✓ ✓ ✓ 22.1776 0.7708 3.6747 7.9125 0.2095
(g) ✓ ✓ ✓ ✓ 22.1780 0.7725 3.6274 7.8915 0.2038

range dependency to learn from another eye. Compared with current state-of-the-art

techniques, SEM-Net successfully transfers features in the visible eye to the masked eye,

including eyeball colour and shape, while preserving finer-grained features. In Places2,

SEM-Net generates fewer artefacts and more coherent structures, such as the white lines

in the road and the edges of coloured cardboard, ensuring the contextual consistency of

the texture and structure of the image.

5.4.5 Ablation Study

In our comprehensive ablation study conducted on CelebA-HQ, we incrementally enhance

the baseline U-Net shape model, observing significant performance improvements with

the integration of each component. Results are shown in the Tab. 5.1 (forM × T ) and

Tab. 5.2 (for SEM-Net). We followed [143] to buildM × T and SEM-Net with a halved

parameter for an efficient evaluation. All ablation experiments are trained for 30,000
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Input a b c d e f g GT
Figure 5.6: The qualitative visualisation of ablation studies. Zoom in for the details.

iterations.

M × T

ForM × T , in the Tab. 5.1, the addition of the Mamba Block in configuration (b) and the

addition of self-attention in configuration (c) both demonstrated improvement across all

evaluated metrics compared to the baseline (a). Notably, self-attention improves in SSIM,

suggesting its superior capability in capturing spatial interactions. Mamba showcases

the superior in capturing pixel-level interactions, demonstrated by the better PSNR and

L1 values. The simultaneous use of Mamba and self-attention in configuration (d) lead to

further improvements, indicating that these components effectively complement each

other and contribute to a robust model. Configuration (e) is our final model, where we

optimise GDFN to CBFN. The overall metrics are further improved.

SEM-Net

For SEM-Net, Tab. 5.2 and Fig. 5.6 present the improvement of each component quantita-

tively and qualitatively. Based on the U-Net shape baseline (Tab. 5.2a), integrating the

Mamba Block (MB) and Feedforward Network (FN) [10] (Tab. 5.2b) results in noticeable

improvements across all metrics. Fig. 5.6d→b and Fig. 5.6e→c shows that degrading

SBDM, model struggle in capture the relations of vertically adjacent pixels, resulting in

artefacts between the left eyebrow and left eye. Fig. 5.6b→c, Fig. 5.6d→e and Fig. 5.6f→g

revealed the effect of SEFN by resulting sharper jaw and less artefacts, demonstrated by

the improvement in SSIM score. Tab. 5.2d→f and Tab. 5.2e→g showcase that introducing

positional embedding significantly improves L1 and PSNR in larger masks, which is

evidenced by the clearer texture at the mouth and eye.

Comparing SMB with Transformer Blocks. We evaluate the effectiveness of our

proposed SMB in image representation learning by comparing it with two typical and

widely used transformer blocks that claimed to have strong capability in capturing
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Table 5.3: Comparison between our proposed SMB with transformer-based methods in
40%− 60% mask ratio. Refer to supplementary material for all mask ratios.

Input Model 40%-60%

Resolution PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

256*256
CSA [10] 21.5362 0.7543 4.0471 8.1652 0.2326
SSA [69] Out of memory
SMB 22.1776 0.7708 3.6747 7.9125 0.2095

64*64 SSA [69] 20.1655 0.7265 5.2256 5.5547 0.1702
SMB 20.1716 0.7352 5.1332 5.3158 0.1617

LRDs: channel-wise self-attention [10] and Spatial-wise self-attention (SSA) [69]. For

fair comparisons, all models use vanilla feedforward networks [10] instead of our novel

SEFN, with only differences between SMB, CSA and SSA. From Table. 5.3, we observe

that our SMB consistently outperforms two distinct transformer blocks across all metrics

in all mask ratios. In addition, our SMB is shown to be efficient enough to process

original resolution (256× 256) images while SSA can only be trained on the degraded

64× 64 images with a single A100 due to its significant computational cost. Furthermore,

compared with the diffusion-based models [62,134] with a very long inference time [136],

our model has better performance while the inference time is still in milliseconds, which

is suitable for real-time scenarios (shown in Tab. 5.6).

Comparison of Sequential Modelling. We provide the illustration in Fig. 5.7 to

showcase the difference between the proposed Snake Bi-Directional Modelling and

simple sequential modelling. Tab. 5.4 showcases the quantitative results on CelebA-HQ in

40%− 60% mask ratio to compare with other optimisations of the SSM-based sequential

modelling [9, 79, 144], demonstrating our superiority across all metrics.

Table 5.4: Comparison of different SSM-based modelling.

Mask PSNR ↑ SSIM↑ L1↓ FID↓ LPIPS↓
2-D SSM [144] 24.1153 0.7877 3.0950 5.8556 0.1672
VMamba [79] 24.1409 0.8031 2.9168 5.9508 0.1739
U-Mamba [9] 24.2077 0.8119 2.7440 5.6034 0.1466

Ours 24.4805 0.8240 2.6389 5.5972 0.1368
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Figure 5.7: Comparison between (a) the proposed Snake Bi-Directional Modelling -
Sequential (SBDM-S) and (b) the simple sequential approach. Our SBDM implicitly
models bi-directional positional context by horizontally and vertically scanning the
tokens, while the snake-shape design preserves the relations within adjacent tokens.

Ablation study for Snake Bi-Directional Modelling (SBDM) To further evaluate each

decision in designing the proposed Snake Bi-Directional Modelling (SBDM) module, we

conduct the experiment by ablating each component. As shown in Tab. 5.7. Bi-D means

horizontal and vertical direction modelling. The model without Bi-D only contains

single horizontal direction modelling. Snake denotes the Snake-like Sequence Modelling.

The model without Snake contains simple sequential modelling. We notice that the

proposed snake-like design and bidirectional design overall improve the performance. An

interesting observation is that at the largest mask ratio, individually integrating each of

the two designs degrades the FID. But the FID at the largest mask ratio gets better when

both snake-like design and bidirectional design are used together. This may indicate that

when the damaged region is large and challenging, both complementary methods need

to be used simultaneously to achieve better inpainting results without fully convergent

training.

5.4.6 Generalization Ability

Unseen High Resolution Images.

We examine the scalability and generalisability of M × T and SEM-Net trained on

256× 256 Places2 images in processing unseen images of higher resolution, since these

abilities are crucial for practical applications where image resolutions can significantly

vary. Fig. 5.11 showcases examples of unseen real-world high-resolution applications.

While [31] performs similarly with larger masks, its upsampling strategy causes narrow
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Table 5.5: Performance in generalising to image motion deblurring task. Our SEM-Net is trained
only on the GoPro dataset [11] and directly applied to the HIDE [12].

GoPro [11] HIDE [12]
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DeblurGAN-v2 [145] 29.55 0.934 26.61 0.875
Shen et al. [12] - - 28.89 0.930
Gao et al. [146] 30.90 0.935 29.11 0.913
DBGAN [147] 31.10 0.942 28.94 0.915
MT-RNN [148] 31.15 0.945 29.15 0.918
DMPHN [149] 31.20 0.940 29.09 0.924
Suin et al. [150] 31.85 0.948 29.98 0.930
SPAIR [151] 32.06 0.953 30.29 0.931
MIMO-UNet+ [152] 32.45 0.957 29.99 0.930
IPT [153] 32.52 - - -
MPRNet [154] 32.66 0.959 30.96 0.939
HINet [155] 32.71 0.959 30.32 0.932
Restormer [10] 32.92 0.961 31.22 0.942
Stripformer [156] 33.08 0.962 31.03 0.940
Ours 33.11 0.962 31.12 0.941

mask drifting, leading to artefacts. Our M × T and SEM-Net captures finer details

without artefacts by modelling at the pixel level to offer the community a better, more

resource-efficient solution for processing large-resolution images. More examples with

different resolutions are included in the supplementary.

Low-level Vision Tasks

To further evaluate the capability of representation learning and generalisation ability,

we directly apply SEN-Net to another low-level vision task, image motion deblurring,

through the necessary learning of the residual between clear images and blurred images

without any other task-specific modifications.

The image deblur task is formulated as Iout = Iin +SEM−Net(Iin), where Iin is the

blurred image, Iout is the clear image. To train our deblurring model, we follow [143] to

use a joint loss consisting of a reconstruction loss and a frequency loss. The formulation

for each loss is shown below:

Lrec = E
[
∥Iout − Igt∥1

]
, (5.22)
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Lfrequency = E
[
∥F (Iout)− F (Igt)∥1

]
, (5.23)

where F (·) is the Fast Fourier transform. The total loss for image deblurring is Ltotal =

Lrec + 0.1×Lfrequency.

Tab. 5.5 shows that SEM-Net overall outperforms the restoration models on two

synthetic benchmark datasets GoPro [11] and HIDE [12]. Especially on GoPro, SEM-Net

improves PSNR by 0.19 compared to the strong restoration baseline model Restormer [10].

Notably, our SEM is trained on GoPro and directly applied to HIDE, without progressive

learning [10] or Test-time Local Converter [157] such external optimization, showcasing

strong generalization ability. Refer to supplementary materials for qualitative results.

5.5 Summary

In this paper, we introduce M × T and SEM-Net for image inpainting designed to

reconstruct high-quality images with fine-grained details and spatial coherence. For

theM × T , the proposed Hybrid Module effectively combines transformer and Mamba,

leveraging the capacity of Mamba for capturing pixel-wise long-range interaction along

with the spatial perception provided by the transformer. This integration enablesM × T

to maintain linear computational complexity, which is particularly advantageous for

handling high-resolution images. For the SEM-Net, it demonstrates strong capabilities in

capturing LRDs and addresses the challenge of lack of spatial awareness in SSMs. In the

SEM-Net, we propose two key designs, SMB and SEFN, for improved image representation

learning.

The two proposed models outperform state-of-the-art approaches on two image

inpainting datasets, especially on CelebA-HQ. This could be due to dataset characteristics,

CelebA-HQ’s structured, human-centric images benefit more from our model’s ability to

capture long-range dependencies and spatial awareness, shown in quantitative results.

Also, we showcases strong generalisability to higher-resolution images and another

low-level visual task, image deblurring.

In this chapter, we contrast three complementary families. Vanilla SSMs provide

linear-time sequence operators that propagate long-range context with minimal memory,
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making them effective as lightweight backbones when efficiency is paramount. SBDM

(Snake Bi-Directional Modelling), introduced in this work, augments sequence modelling

with a snake-like raster and bi-directional passes, enabling richer horizontal–vertical

context aggregation than plain SSMswhile retaining favourable computational complexity.

This is advantageous when coherent structure must be propagated across irregular

masks without resorting to full attention. SEM-Net is our geometry-aware, multi-task

inpainting framework that couples reduced attention/SCAL with a landmark branch.

It injects explicit anatomical priors and is trained on open data with clinical images

reserved for validation, emphasising privacy and anatomical plausibility. Practically,

SSMs are preferred for fast global context propagation under tight budgets, SBDM for

stronger bidirectional context without attention overhead, and SEM-Net for privacy-

aware, structure-constrained facial repair.
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Figure 5.10: Examples of generalisation to real-world high-resolution images of 2560×
1920.
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Figure 5.11: Examples of generalisation to real-world high-resolution images of 2560×
1920.
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Blurry Image Reference DBGAN [147] MPRNet [154]

MAXIM [158] Restormer [10] Stripformer [156] SEM-Net (Ours)

Blurry Image Reference DBGAN [147] MPRNet [154]

MAXIM [158] Restormer [10] Stripformer [156] SEM-Net (Ours)

Blurry Image Reference DBGAN [147] MPRNet [154]

MAXIM [158] Restormer [10] Stripformer [156] SEM-Net (Ours)

Blurry Image Reference DBGAN [147] MPRNet [154]

MAXIM [158] Restormer [10] Stripformer [156] SEM-Net (Ours)

Figure 5.12: Image motion deblurring comparisons on GoPro [11]. Our method generates
sharper results with higher visual fidelity.
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CHAPTER 6

Conclusion

This thesis presents a comprehensive exploration of advanced techniques for image

inpainting, focusing on addressing the critical challenges of “effectively using insufficient

information” (Chapter 3) and “capturing long-range dependencies” (Chapter 4). By

introducing novel models and methodologies, this work enchances the reconstruction

quality of corrupted images for various scenarios with irregular or large missing regions.

Additionally, we adopt the image inpainting technique in real-world applications for

non-cleft lip facial image generation (Chapter 5), demonstrating its potential to address

medical challenges and improve patient outcomes.

Chapter 3 demonstrates a single-stage multi-task framework that shares an encoder

between an image-generation branch and a landmark-prediction branch. Fusing pre-

dicted landmarks back into generation yields anatomically plausible non-cleft lips from

cleft-lip photographs while training exclusively on open data and reserving clinical im-

ages for validation, thereby reducing leakage risk. Expert surgeons’ assessments and

CelebA experiments support its feasibility and superiority over baselines. Chapter 4

introduces HINT, which preserves visible information with a mask-aware pixel-shuffle

downsampling (MPD) and models long-range dependencies with a Spatially-activated

Channel Attention Layer (SCAL) embedded in a “Sandwich” (FFN–SCAL–FFN) trans-
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6.1. Review of Contributions

former block. Ablations and benchmarks on CelebA/CelebA-HQ/Places2/Dunhuang

show consistent state-of-the-art performance. Chapter 5 proposes M×T—a hybrid of

Mamba and Transformer for dual-level (pixel- and patch-wise) interaction at near-linear

cost—and SEM-Net, which adds Snake Bi-Directional Modelling and a Spatially-Enhanced

FFN to restore spatial awareness in state-space models. Both outperform prior art, scale

to high resolutions, and generalise to image deblurring.

6.1 Review of Contributions

In Chapter 3, we develop and adopt an image inpainting technique to the real-world

application of generating a non-cleft lip image from a baby with a cleft lip, focusing on

protecting patient privacy. Facial inpainting tasks are evaluated based on the semantic

plausibility of facial structure and image quality. Existing methods, such as EdgeCon-

nect [1] and Lafin [3], rely on multi-stage processes that introduce redundancies and

dependency on the first stage’s accuracy. To address these limitations, we propose a

single-stage, end-to-end, multi-task framework that integrates adaptive feature fusion and

landmark prediction. This approach enhances parameter sharing, leverages masked im-

ages and partial inpainted features, and produces precise geometric indicators (landmark

points) for reconstructing facial attributes. Furthermore, patient privacy is preserved as

no sensitive data is used for training.

In Chapter 4, we observe that, effective image inpainting requires addressing the

challenges of modelling valid information in visible regions while minimising information

loss. Existing methods often struggle with information degradation due to convolutional

down-sampling or the computational inefficiencies of spatial self-attention. To overcome

these issues, we propose High-quality INpainting Transformer (HINT), involving a tailor-

made pixel-shuffle down-sampling module to preserve data consistency and reduce

information loss. Additionally, HINT employs the Spatially-activated Channel Attention

Layer (SCAL) to balance spatial and channel-level information, maintaining spatial

awareness while reducing computational complexity. A novel “Sandwich” structure

integrates SCAL with feed-forward networks for enhanced efficiency and effectiveness.

In Chapter 5, based on the Mamba’s capability of handling long-sequence modelling,
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we propose two novel approaches,M × T and SEM-Net. M × T combines the strengths

of transformers and Mamba for dual-level interaction learning. SEM-Net introduces the

Snake Bi-Directional Modelling module (SBDM) for spatial consistency and the Spatially-

Enhanced Feedforward Network (SEFN) for local refinement. These innovations address

spatial awareness and adjacency continuity while maintaining computational efficiency,

making it feasible to handle the large-resolution image inpainting task.

Together, these contributions reflect a holistic advancement in image inpainting, from

addressing sensitive real-world needs in medical imagery to innovating core architec-

tural components for scalable, high-fidelity reconstruction. These works bridge the gap

between practical utility and theoretical innovation, laying a solid foundation for future

research in both applied and general-purpose inpainting.

6.2 Limitation

While this thesis contributes new insights into medical image inpainting, transformer-

based frameworks, and Mamba-augmented architectures, several limitations remain that

define the boundaries of the presented work.

Data availability and diversity. The proposed cleft lip inpainting framework is

trained and validated on relatively small, domain-specific datasets. Although expert

evaluations confirm its feasibility, the limited diversity of facial appearances, age groups,

and clinical variations restricts generalisability. Similarly, the benchmark datasets used

in subsequent chapters (CelebA-HQ, Places2, Dunhuang) do not fully represent the

complexities of unconstrained real-world imagery.

Scalability and computational efficiency. Our claims are supported by evidence

in earlier chapters: (i) HINT (Chapter 4) attains state-of-the-art accuracy across CelebA-

HQ, CelebA, Places2, and Dunhuang, yet its inference remains costlier than some CNN

baselines and still significant versus diffusion variants at high resolution (see the diffu-

sion/runtime comparison in Tab. 4.2), so scaling to very large images is non-trivial. (ii)

M×T (Chapter 5) combines Mamba with a transformer and preserves (near-)linear com-

plexity, which improves scalability to high-resolution settings, though the hybrid design

adds architectural complexity. (iii) SEM-Net (Chapter 5) captures long-range dependen-
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cies with linear-time state-space modelling and demonstrates cross-modality transfer by

directly applying the trained model to image deblurring on GoPro/HIDE—outperforming

strong restoration baselines without task-specific redesign—yet the full U-Net-style stack

can still challenge edge deployment.

Evaluation metrics. As shown in Tab. 3.3, Tab. 4.1, Tab. 4.11, and Tab. 5.6, standard

quantitative metrics (PSNR, SSIM, LPIPS, FID) capture fidelity and perceptual realism

but remain imperfect proxies for human judgement, particularly in sensitive clinical

scenarios. The absence of user-centric evaluation frameworks constrains the ability to

measure true downstream impact.

Generalisability across domains. While the methods demonstrate strong results on

facial and natural scene imagery, their performance in specialised areas such as medical

radiology, satellite imaging, or scientific visualisation remains unexplored. Adapting

inpainting to such domains requires rethinking assumptions about texture, geometry,

and semantics.

Ethical and interpretability concerns. Applying inpainting to human faces, espe-

cially in clinical settings, raises important ethical questions regarding bias, fairness, and

the interpretability of generated outputs. These issues are not comprehensively addressed

within the scope of this thesis but remain critical to responsible deployment.

6.3 Future Research Directions

Looking ahead, several promising research directions can extend the contributions of

this thesis and shape the broader field of image inpainting.

6.3.1 Towards richer and more representative datasets.

Expanding datasets for both clinical and general inpainting tasks is a pressing need.

Collecting large-scale, demographically balanced medical image datasets (e.g., including

varied cleft lip cases across age, ethnicity, and severity) will improve robustness. For

general-purpose inpainting, curating multi-domain datasets (combining natural images,

scientific data, and artwork) will encourage more versatile models.
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6.3.2 Scalable and efficient architectures.

The increasing resolution and complexity of modern imagery demands architectures that

scale linearly (or sub-linearly) with image size. Future work could focus on lightweight

variants of HINT, SEM-Net, and M×T, exploring pruning, quantisation, and knowledge

distillation to reduce training and inference costs without sacrificing fidelity.

6.3.3 Unified modelling of geometry, semantics, and context.

Current approaches often trade off between preserving fine local geometry and capturing

global semantics. Future inpainting frameworks should aim for unified representations

that balance structural integrity with contextual plausibility, potentially through hybrid

models that integrate geometric priors, 3D reasoning, or multimodal signals (e.g., text,

depth, or temporal cues).

6.3.4 Controllability and user-guided inpainting.

A critical future direction is enabling controllable inpainting where users (or downstream

systems) can specify constraints such as structure, style, or semantics. This may involve

conditioning on textual prompts, sketches, or high-level attributes, bridging inpainting

with the rapidly developing field of generative AI controllability.

6.3.5 Evaluation beyond metrics.

New evaluation frameworks are required that capture perceptual realism, functional

correctness, and ethical considerations. For example, in medical applications, assess-

ments should be co-designed with clinicians to ensure that inpainted outputs are safe,

interpretable, and clinically meaningful. In creative domains, human perceptual studies

and task-oriented evaluations will better reflect the value of generated imagery.

6.3.6 Generalising across modalities and tasks.

The principles explored here—geometric guidance, mask-aware downsampling, hybrid

transformer-SSMmodelling—are not confined to image inpainting. They may be extended
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to related restoration and generation tasks, such as video inpainting, motion deblurring,

super-resolution, and cross-modal translation. Future work should explore unifying these

under a single generative framework.

6.3.7 Responsible and ethical deployment.

Finally, inpainting research must actively engage with ethical questions. Future work

should developmechanisms to detect and preventmisuse (e.g., deepfakes), address fairness

across demographics, and provide interpretable uncertainty estimates. Embedding these

considerations at the model-design level will be essential for trustworthy applications.
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