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Abstract
Background
Skin cancer is one of the most prevalent cancers globally, with early detection critical to ensure reduced
mortality risk. To aid early detection, machine learning (ML) skin cancer detection models have been pro-
posed, currently with a focus on dermatoscopic imaging only. However, freetext may provide extra diagnostic
information that is not present in images alone.

Methods

We constructed a multimodal dataset comprising 5,481 dermatoscopic images from 4,538 patients, including
patient metadata and clinical notes, with binary labels (benign vs. malignant, 7% malignant). To assess
and mitigate bias from leading language, we developed a clinical text preprocessing pipeline combining regular
expressions and large language models, enabling multiple levels of filtering. We train multimodal ML models on
this dataset to explore the effect of freetext on model performance.

Results

Our results show that incorporating unfiltered text significantly improves classification performance (0.970
AUROC) compared to visual data alone (0.909 AUROC); even with leading language removed, performance
gains persist (0.948 AUROC).

Conclusions

This work benchmarks clinical freetext inclusion in skin lesion classification, demonstrating that clinical text
contributes predictive value beyond that available in images alone. The model’s high performance on unfiltered
clinical text highlights the high levels of bias, and possible shortcutting, present in this text which may make it
unsuitable for inclusion in some ML models. By systematically filtering clinical notes via our proposed technique,
we show that multimodal models retain improved accuracy while reducing bias. These results provide practical
guidance for integrating clinical text into real-world skin cancer detection systems and establish a foundation
for future multimodal research in dermatology.

Plain Language Summary

Prompt detection of skin cancer improves survival, but diagnosis must be made by clinicians. Image-based machine
learning models for skin cancer classification have shown promise. However, key information is often only recorded
in clinical notes, such as whether a lesion has changed, itches, or bleeds. By creating a dataset that contains images,
patient data, and freetext descriptions of the problem, we train a series of machine learning models on both images
and freetext to predict skin cancer. We show that the inclusion of freetext significantly enhances model performance,
but that care must be taken to ensure the freetext does not unintentionally bias the model. These models could be
used in multiple points in a skin cancer clinical workflow to either support more accurate referrals to dermatology,
or direct patient access to dermatology services, potentially reducing wait times and improving patient outcomes.



Introduction

Skin cancer is one of the most prevalent cancers globally
and, despite efforts towards improving prevention, its in-
cidence continues to increase [1]. However, the 5-year net
survival rate for early stage detection of skin cancer, par-
ticularly melanoma, is extremely high relative to other
cancers, reaching up to 99.6% for stage 1 melanoma [2]
(although known health inequalities in dermatology ex-
ist [3]). Effective screening via self-examination helps
the early detection of skin cancer that might otherwise
result in mortality [4]. Skin self-examination is techni-
cally straightforward: an unaided visual inspection of the
lesion. If the patient identifies any concerning features
they are encouraged to present to a healthcare profes-
sional (HCP) for a clinical assessment which includes a
detailed medical history and examination of the lesion,
often with magnification (a dermatoscope). If the HCP
suspects skin cancer they will refer the patient to a spe-
cialist service using a suspected cancer pathway [5].

The UK primary care system is under unprecedented
pressure with an increasing demand put on referrals into
specialist services. To address these pressures, work is
needed to improve both referral efficiency and diagnos-
tic accuracy within primary care [6]. The digitisation
of primary care records, technical ease of skin inspec-
tion, and high early survival rates together mean that a
machine learning (ML) powered detection framework for
skin cancer has the potential to deliver these efficiencies
and improve skin cancer related mortality.

Encouragingly, the past few years have seen a
plethora of work bringing the power of ML to the prob-
lem of skin lesion classification [7, 8, 9], yielding models
with diagnostic accuracies that outperform some primary
care HCPs. Though earlier databases of labelled skin le-
sion images are relatively small by modern standards,
they were instrumental in evaluating the relatively im-
pressive classification systems of their era [10, 11]. Over
time, increasingly comprehensive dermatology datasets
have been published [12, 13] with datasets such as
HAM10000 [14, 15] and BCN20000 [16, 17]. Most re-
cently, the ISIC 2020 image challenge [18, 19] contains
images that distinguish between over a dozen classes of
malignant lesion types. Cassidy et al. [20] provide a thor-
ough analysis of the ISIC database.

While these datasets primarily use of images for skin
lesion classification, recent approaches have sought to
improve model performance by introducing additional
modalities of input data. Metadata of the patient such as
age and biological sex is a common source of additional
information that many approaches add as features into
models [21, 22]. Other research uses metadata about the
lesion itself as additional inputs [23, 24, 25, 26, 27]. Using
such patient and lesion metadata modalities has become
standard practice for state-of-the-art lesion classification
[23]. However, to the best of our knowledge, while mul-
timodal ML models have gained traction within other

medical specialities [28, 29], there has been no research
into the use of clinical freetext notes alongside categorical
metadata and skin lesion images for lesion classification.

In this paper, we take the next step in multimodal
skin lesion classification by introducing natural language
text information as an input modality. Such clinical
freetext provides extensive natural language descriptions
of lesion appearance and any associated symptoms over
time. It contains detailed information beyond that con-
veyed in the categorical metadata (e.g., “patient has an
uncle who had melanoma in their 30s”), and additional
input features such as working diagnosis and manage-
ment plans (e.g., “the mole contains some worrying fea-
tures, refer for biopsy to exclude melanoma”).

However, this type of freetext often contains ‘lead-
ing language’ - that is, text written in a way which may
state or imply a particular diagnosis by its sentiment or
management plan. Using this text during model train-
ing risks learning ‘shortcuts’ or spurious correlations -
that is, features of the text which are correlated with the
target variable but not causally related to it [30, 31].

To the best of our knowledge, our work is the first
to identify and remove diagnoses and other such forms
of leading language from clinical freetext for the pur-
poses of an ablation study in skin lesion classification.
Previous work has proposed a system for detecting un-
certainty in clinical text [32, 33, 34, 35]. While clini-
cal named entity recognition [36] techniques are well es-
tablished for detecting diagnoses and other important
clinical units of text, these are designed to detect spe-
cific words and phrases (e.g., conditions as present in
UMLS [37]) whereas our proposed methods are designed
to detect and remove more broad forms of leading lan-
guage. Although methods exist that aim to debias clin-
ical text (or, often, text embeddings from a language
model), these are aimed at reducing gender, age, eth-
nicity bias rather than label leakage or clinical language
[38, 39]. Similarly, Ji et al. [40] and Wiest et al. [41] use
large language models (LLM) for clinical named entity
recognition. Where these works focus on the task of de-
tecting these components in and of itself, we extend the
usage of LLMs to detecting leading language as a prepro-
cessing step to skin lesion classification. This approach
aims to mitigate the risk of bias and label leakage that
has shown to be present in clinical freetext, and can be
extended to medical machine learning applications out-
side of dermatology [42, 43].

To this end, we develop an approach to carefully re-
move increasing levels of leading language, letting us shed
light on the performance that certain forms of allowable
freetext can unlock for a wide variety skin lesion classi-
fication systems. We combine this leading language pre-
processing approach with an ablation study on the four
distinct subcategories of clinical freetext in our dataset,
providing a thorough exploration of performance im-
provements that a diverse array of text can bring to skin



lesion classification. Our results show that unfiltered text
yields a large performance increase to the classification
task (0.970 AUROC). Further, our extensive component-
wise analysis of text demonstrates high levels of bias and
label leakage and thus that great care should be taken to
preprocess the text in scenarios where leading language
is undesirable; this component-wise analysis also shows
that our proposed LLM-based pipeline is successful in
removing this leading language. Understanding the po-
tential for unintended bias in medical ML [44], we evalu-
ate our best performing skin lesion classification models
in terms of their bias. In summary, this paper proposes
exploiting LLMs to implement a preprocessing step to
adjust levels of leading language in clinical freetext - an
essential measure to mitigate bias in multimodal classi-
fication - and demonstrates state of the art classification
performance using these techniques for skin lesion clas-
sification.

Methods

To analyse the effect of the different levels of freetext
on ML models, we train multimodal (see Supplementary
Methods for a discussion of multimodality) ML classifiers
for skin lesion classification using what is, to the best of
our knowledge, the first large-scale skin lesion dataset
that contains dermatoscopic images, patient metadata,
and clinical freetext.

Multimodal Dataset

Our dataset is derived from anonymised secondary care
electronic health records (EHR) of individual patients
with skin conditions, obtained from Community Derma-
tology Services. A redacted and fully anonymised data
set was provided by a healthcare service provider in order
to develop algorithmic (AT) tools to support and improve
the diagnosis of skin conditions within their service pro-
vision. This process was reviewed and approved by the
healthcare provider’s data protection officer, is in line
with UK GDPR requirements and is part of the health-
care provider’s usual business practice and services (see
the Ethics statement for more details).

The dataset contains demographic data, photographs
of skin conditions taken by HCPs and/or patients, data
on medical conditions and medications, clinical opinions
and examinations, and where appropriate histology find-
ings. As highlighted in Table 1, our dataset contains
additional linked information and the non-image modal-
ities it provides. Natural language freetext clinical notes
contain longitudinal information about the history and
changes of the skin lesion, the patients family history
of skin disease, and historical exposure to sunlight i.e.,
information that is not available from the lesion image
alone.

Results reports dataset statistics. All patients had a

single skin lesion condition diagnosed - the final dataset
does not include rashes, nor patients with multiple di-
agnoses. Patients had at least one dermatoscopic image
taken; all other fields (both freetext and patient meta-
data) were optional, with missing data being represented
by an empty string when passed to the text classifier.
Figure 1 shows exact inclusion/exclusion criteria for our
dataset.

Dataset Curation Details

Patient data is encapsulated in FHIR format (NHS Dig-
ital - FHIR), and extracted as ‘clinical impression’ ob-
jects.

As this dataset comes directly from dermatology de-
partments it naturally filters out almost all irrelevant
data points i.e. non-skin related diseases. However, we
further ensure the relevance of each data point by requir-
ing that the SNOMED-CT (Systematized Nomenclature
of Medicine Clinical Terms) diagnosis code (SNOMED
International) is a child of the SNOMED-CT code for
‘Skin Lesion’ (i.e. that the type of disease is a taxonom-
ical child of ‘Skin Lesion’). In this way, SNOMED-CT
codes in our dataset can be thought of as existing on a
taxonomical tree with the parent SNOMED-CT of ‘Skin
Condition’ as its root. Many of the SNOMED-CT codes
in our dataset exist on the leaves of the taxonomical tree
and are thus very granular and specific e.g. ‘Malignant
melanoma of skin of chin’, and others are more general
e.g., ‘Actinic keratosis’.

Patient Metadata and Ground Truth

The dataset contains RGB colour dermatoscopic images
of lesions from secondary care. The average image reso-
lution for the dataset is 992x1333.

Ground Truth is determined by a SNOMED-CT
code for the specific type of skin disease identified in the
dermatoscopic image. SNOMED-CT is a structured clin-
ical vocabulary used in EHRs to standardise the record-
ing of medical information and, in this case, are recorded
by a HCP upon diagnosis. These SNOMED-CT codes
are the source of the benign/malignant labels used for
classification. A list of unique skin condition SNOMED-
CT codes present in our dataset were sorted by der-
matologists into the classes: ‘benign’, ‘malignant’, ‘pre-
malignant’ or ‘ambiguous’. Patients with an ambiguous
diagnosis were removed, and we then transform this into
a binary classification task by treating ‘pre-malignant’
codes as ‘malignant’. Although inter-coder agreement
on SNOMED-CT coding has sometimes been shown to
be low [45], this issue is largely mitigated in our dataset
through the manual grouping of all SNOMED-CT codes
present in our dataset into one of these 4 categories
(hence two similar codes will be given the same ground
truth label).


https://digital.nhs.uk/services/fhir-apis
https://digital.nhs.uk/services/fhir-apis
https://www.snomed.org/
https://www.snomed.org/

All malignancies were confirmed through histopatho-
logical results whereas, as most patients with suspected
benign conditions do not undergo biopsy, clinically con-
firmed benign diagnoses (i.e., a diagnosis from a derma-
tologist visually inspecting the lesion, without a further
biopsy) were included. While this may mean that a small
number of benign samples in our dataset may be mis-
labelled (due to clinician misdiagnosis), clinician false
negative rates in dermatology have been shown to be
low [46, 47] and the size of the benign dataset is large
enough that this error rate should be no larger than
the label noise shown to be present in many other ML
datasets. Therefore, we expect the modern ML mod-
els used in this study to overcome this issue [48, 49].
Conversely, clinician false positive rates are much higher
[46, 47] due to the desire to avoid missing a skin cancer
diagnosis. Due to the small proportion of malignant sam-
ples in our dataset, these errors may disproportionately
affect model training and therefore we restrict our data
to histopathology-confirmed malignant diagnoses, which
have a much lower error rate.

Discrete Patient Metadata: Our dataset contains
four discrete features about the patients themselves that
can be considered relevant to skin lesion classification:
age; sex; Fitzpatrick skin score (a discrete scale of the
tone of healthy skin, 1 as lightest and 6 as darkest) [50];
and an index of multiple deprivation decile, a score of
poverty with 1 as most deprived and 10 least deprived,
derived using the patient’s Lower Layer Super Output
Area (LSOA) [51].

Clinical Freetext Components

The clinical freetext used in this experiment is formed
from notes of various types contained in the EHR.
Though such data is often noisy, this subsection describes
the following four components that are abundantly and
richly annotated, making them suitable for inclusion in
multimodal predictive models (examples are in Table 2).
Family History of Skin Cancer: This text is short
(2.82 words on average) but dense with information.
Typically, this field is a single, short phrase regarding
knowledge of any family members with skin cancer; ex-
amples include “no history” or “father had melanoma”.
The potential classifying power that this modality of clin-
ical freetext has is in theory derived from genetic pre-
disposition to skin cancer [52, 53]. Though the average
sentence in this section is short, the total vocabulary for
this component is over 1,500, reflecting its diversity.
Exposure to Sunlight: Similarly to family history
of skin cancer, this is another short (4.4 words on av-
erage) but information dense modality of text. These
phrases serve as an approximation of a patient’s sun ex-
posure, doing so in diverse but detailed language (re-
flected by its 2,400+ vocabulary). This often requires
contextual knowledge: for instance, “patient lived in
Brazil for 10 years” requires the knowledge and reasoning

that the sunny weather in Brazil means most of the pop-
ulation have higher than average ultra violet radiation
exposure. Such information is well suited for analysis by
the language models we use in our experiments, with ex-
posure to sun known to increase the risk of skin cancer
[52, 53].

Surgical Consultation Notes: The surgical con-
sultation notes are longer (23.86 words on average) and
broadly comprised of a combination of one or more of
following three sub-categories:

1. Lesion description: A factual description of the
lesion with no direct implication to a suspected di-
agnosis, e.g., “lesion on right shoulder is dark red
and bleeds when scratched”

2. Diagnosis attempt: Attempts to directly diag-
nose the lesion by a HCP e.g., “basal cell carci-
noma, refer to hospital”. Such text naturally con-
tains significant leading language.

3. Treatment prescription: Notes of which treat-
ment has been prescribed. This can also contain
significant classifying power as prescriptions for
typical skin medication are almost always for be-
nign skin conditions, with suspected malignancies
instead referred directly to hospital for biopsy.

Although surgery consultation notes contain targeted
and specific language that may aid in cancer classifica-
tion, they also include language elements that strongly
indicate the ground truth label, potentially introducing
significant bias in ML models. We outline our methods
for controlling such leading language in order to ensure
proper ML model behaviour in Controlling Leading Lan-
guage in the Clinical Text.

History and Observations: The longest (47.84
words on average) and most diverse component with a
total vocabulary of over 6,900, containing descriptive lan-
guage of details pertinent to the skin lesion without mak-
ing a direct diagnosis i.e., its size and colour. Perhaps
most crucially, these histories describe changes in the
lesions over time. Such information can greatly aid diag-
nosis e.g., it is important to know if a lesion has grown or
changed colour [54]. As shown in Table 2, compared to
the surgical consultation notes, such free-form descrip-
tive language is longer, and has a larger total vocabulary
with more lexically diverse sentences, but much less lead-
ing language.

Controlling Leading Language in the Clin-
ical Text

To the best of our knowledge, this study is the first to
consider clinical freetext for ML based skin lesion classi-
fication. Naively adding all components of freetext into
a classification system is, however, not always desirable.
Such real-world text data can often be unstructured and



messy, and can contain domain-specific terminology, in-
cluding but not limited to: working diagnoses of diseases,
medication, and symptoms [40, 41]. These facets of the
text may strongly indicate the clinician’s differential -
either implicitly or explicitly - which could unintention-
ally bias a classification model through ‘data leakage’ or
‘short-cutting’. Leading language is a significant issue in
clinical text; Table 2 demonstrates that 26% of the sur-
gical consultation notes in our dataset contain medical
terminology.

It is important to note that the leading language in
physician-provided freetext may be a result of clinical
acumen and intuition, rather than just a summary of the
clinical examination. In cases like these, it could be ar-
gued such leading language is beneficial to an ML model
as it can provide information that is impossible to other-
wise learn. In this study we directly explore this effect,
through varying the levels of leading language allowed
during model training, to better understand how leading
language effects classification model performance.

Indeed, the level of acceptable leading language in
the training of ML models depends on the point in the
care pathway the model will be deployed. For example, a
skin lesion classification model could be deployed within
primary care to assist referrals to secondary care - in
this case it may be acceptable to allow some forms of
leading language from the primary care physician. On
the other hand, it would not make sense to train on
the same set of freetext data when aiming to deploy
a skin lesion classification model directly to patients -
there would be significant data shift between the clini-
cal freetext used for training, and the patient-provided
text in deployment. However, careful removal of lead-
ing language in the clinical freetext could shift the data
distribution of clinical freetext towards that seen from
patients, enabling training of models that could be de-
ployed in patient-facing contexts even when the training
data contains only clinician-provided freetext.

We compare and contrast traditional regular expres-
sion text removal techniques with LLMs. Using Llama
3.1 [55], we build upon existing work that used Llama 2
[56] to detect assertions, diseases, exams and dosages in
clinical text [40, 41].

Strategy for Removing Leading Language

For a thorough analysis of the effects of leading language
in our text features on the classification task, we process
the surgical consultation notes at one of four levels
of increasingly strict removal of ‘leading’ clinical content
(see Table 3).

Our designated Original (Orig) text features the
full clinical freetext. ConditionFiltering (CFilt) uses
a regular expression to remove the names of any skin
conditions, and DiagnosisFiltering (DFilt) further re-
moves the words ‘benign’ and ‘malignant’, in effect re-
moving all diagnoses. Though regular expressions can

remove the exact diagnoses themselves, they are much
less effective at removing any phrasing or text structure
that could imply a diagnosis (e.g., “referred to hospital”
typically implies concern around a possibly malignant
skin lesion). They are also ineffective at removing lan-
guage that contains typos and/or spelling errors, and are
difficult to generalise to new concepts [57]. We aim to
capture and control for this difference by introducing two
even higher standards of text preprocessing that utilise
LLMs.

Our strictest scenario FullyFiltered (FFilt) is de-
signed to remove any clinical leading language, effectively
allowing only statements of known fact. The FullyFil-
tered filtering level is designed to remove any leading
language written by a clinician that could not be gained
by asking the patient a question - it is, effectively, a com-
bination of the CFilt and DFilt levels with the addition of
also removing proposed treatments. This means simple
statements of fact, such as sun exposure or skin type, are
allowable at this level as this information can be easily
gathered by asking the patient a series of questions. The
aim of this filtering level is to shift the text data distribu-
tion to more closely match what a patient could provide,
to explore whether skin lesion classification models could
be patient-facing rather than clinician-facing.

SemanticTagging (STag) is designed purely for
analysis, where any phrasing pertaining to five common
diagnostic scenarios are replaced by tags (Table 3). Any
combination of these tags can then be removed/allowed
to assess their classifying power.

An example of a typical piece of clinical freetext un-
der each level is as follows (with filtered text replaced
with underscores for visualisation purposes only - in the
actual data, the terms are fully removed):

e Original: “lesions looks like benign mole. no

treatment required.”

e ConditionFiltering: “lesions looks like benign
no treatment required.”

e DiagnosisFiltering: “lesions  looks like
,,,,,,,,,,,,,, no treatment required.”

e FullyFiltered: “lesions;”

e SemanticTagging: “lesion looks @DB@.

QNT@.”

As FullyFiltered and SemanticTagging are compli-
cated to derive from the raw text, we process them using
Llama 3.1. This model was not finetuned, but rather
processed each of the training and validation examples
one at a time using over 20 examples from the test set as
guiding examples in the prompt (i.e., few-shot prompt-
ing). The prompts used are available in the Supplemen-
tary Methods; when performing text filtering, only the
freetext to be filtered is provided to the LLM (not any
associated patient metadata, diagnoses, etc). Random



samples of the resulting processed text were manually
inspected to ensure data quality.

Classification Model Training

We use stratified sampling (on the ground truth label,
i.e., benign/malignant) to split our dataset into three
subsets: 3,277 (60%) in the training set; 1,081 (20%) in
the validation set; and 1,123 (20%) in the test set. We
stratified on a per-patient basis, so a patient with multi-
ple images will not be distributed across different splits.

As our dataset contains medical image and text fea-
tures, we cannot rely on pretrained models and must
train models from scratch; due to computational lim-
itations, large-scale multimodal LLMs are beyond the
resources of this study. To this end, we purpose-
fully select vision and text component models that
are reliable and have been widely used as benchmarks
for different applications. To classify the dermato-
logical images, we use ConvNext-Large-224 [58] as a
convolution-based vision encoder. ConvNext was se-
lected for its ability to match or outperform vision trans-
formers on a range of medical imaging tasks [59, 60],
and with the knowledge that convolution-based clas-
sifiers are generally more effective than transformer-
based networks for dermatoscopic images due to their
structural characteristics [61]. We transform tabular
data to text, in the format ColumnNamel is Valuel,

., ColumnNameN is ValueN, as previous studies have
shown this provides superior performance over other tab-
ular data encoding techniques [62]. To encode this free-
text and tabular data, we use BioClinicalBERT [63] as
a transformer-based text encoder. BioClinical BERT has
been pre-trained on a large corpus of medical and clinical
text, including clinician notes, and has been consistently
shown to out-perform non-medical language models on
clinical tasks [62, 64]. We extract vector representations
from each used model for late fusion (concatenation) as
input into a final non-linear classifier head (Supplemen-
tary Figure 1), thus using both visual and textual inputs.
To address the significant class imbalance, all models
were trained using weighted cross entropy loss with class
weights computed as 2%, where N is the total number
of samples and n; denotes the number of samples in class
i.

As dermatologist false negative rates have been shown
to be around 1 in 20 [46, 65, 47, 66], we set the threshold
for each classifier such that it achieves 95% sensitivity
on the test set. We then report the resulting specificity
at this threshold, and complement these results with the
overall AUROC and average precision (AP) scores. AP
was chosen over other metrics due to its suitability for
heavily imbalanced classification problems [67]. AP is
defined as the area under the precision-recall curve and
thus an unskilled model has an AP value equal to the ra-
tio of the positive class (0.07 in this study), rather than
0.5 like other metrics such as AUROC. For generalis-

ability and improved external validation, Supplementary
Table 1 presents metrics on the test set when using a de-
cision threshold computed by requiring 95% sensitivity
on the validation set. We use Integrated Gradients [68]
to compute feature attributions for our best performing
multimodal models, using the all-zero tensor as a base-
line for the image input and the PAD token for the text
input. Integrated Gradients was chosen over other ex-
plainability techniques as it can easily be extended to
handle inputs of different modalities at the same time,
crucial for our multimodal modelling.

Statistics and Reproducibility

All analyses were conducted using Python 3.10. Follow-
ing best practice for both BioClinical BERT and Con-
vNext [69, 58], models were trained with a learning rate
of 1 x 1075 for 5 epochs, with a batch size of 32. We
repeat experiments with the same hyperparameters (but
different random seeds) 5 times, and present both the
mean and 95% confidence intervals of these 5 runs for
each performance metric in Tables 4, 5, and 6.

Results

After filtering down to eligible patients (Figure 1) our
retrospective dataset includes 5,481 images from 4,538
patients. Patients are aged 18 to 99 years (mean: 55;
Figure 2(a)) and 62% female, with a modal Fitzpatrick
Skin Score [50] of 2 (Figure 2(b)). Among these patients,
7% were diagnosed with malignant lesions, confirmed via
biopsy (Supplementary Figure 2). The remaining 93%
had either a clinically or histopathology confirmed be-
nign diagnosis. Table 1 compares our dataset with other
publicly available skin lesion datasets. Table 4 serves as
the main results table for the paper, containing the ma-
jority of our multimodal experiments. Table 4 references
Table 5 for the ablation on components of discrete meta-
data, and Table 6 for the ablation on leading language
for surgical consultation notes. Results are visualised in
Figure 3. The following subsections highlight the results
of each of the tables.

Using the vision model only results in an AUROC
of 0.909, a baseline result that all following experiments
will be measured against.

Metadata Ablation

The results for this subsection are in Table 5. When dis-
abling the input of the dermatoscopic image and relying
only on the patient’s age as input to the text model, our
model achieves an AP and AUROC of 0.188 and 0.749
respectively. It is expected that age alone can yield mod-
erate classifying power as skin cancer is more prevalent
in older people [70]. Though of course one cannot judge a



skin condition on the age of the patient alone, the above-
random performance of this experiment is testament to
age bias in such clinical scenarios. We find that the other
3 components of discrete patient metadata: Fitzpatrick
Skin Score, Index of Multiple Deprivation Decile, and Sex
each exhibit noticeably less classifying power than age,
with models often unable to achieve the desired 95% sen-
sitivity level without consistently predicting the positive
class. The combination of all 4 discrete patient metadata
yield a 0.793 AUROC (0.05 higher than with age alone).
Given this knowledge of the bias contained within the
metadata, it follows that when we include them along-
side the dermatoscopic image, we find little change in
performance compared to the vision model alone (0.923
vs 0.909).

STag Ablation

This subsection focuses on the component-wise ablation
of leading language in the most powerful of our four clin-
ical freetext groups - the surgical consultation notes
(see Table 6).

Row 1 in Table 6 shows the result of using what re-
mains of the surgical consultation notes after all com-
ponents of leading language have been removed, finding
an AUROC of 0.824 and an AP of 0.285. Rows 3 to
7 show the increase in performance of including each of
the five components individually. We find the individ-
ual allowance of any benign diagnosis attempt (QADB@),
or any malignant diagnosis attempt (@QDM@Q) increases
performance to the level of the standalone vision model
(0.931, or 0.943 respectively). Such high performance
from this text alone is unsurprising as it is expected that
confident diagnosis opinions correlate heavily with the
ground truth. Synonyms of ‘refer to hospital’ (QRTHQ)
yield a noticeably lower AUROC of 0.857. Any men-
tion of non-hospital treatments such as prescription of
medications or emollients (QT@) do not improve text
model performance: 0.798 AUROC. The inclusion of all
components of leading language (row 10) yields a 0.942
AUROC, with an AP of 0.531. Finally, including the der-
matoscopic images with text gives an AUROC of 0.955
when all leading language is removed (0.05 increase over
unimodal vision), and 0.975 when all components of lead-
ing language are allowed to remain, with an AP of 0.779.

Full Multimodal Ablation

Table 4 encapsulates both the majority and rest of our
ablation experiments. Rows 2 through 9 show the rest
of our analysis of the surgical consultation notes usage.
The unfiltered surgical consultation notes alone (row 2)
yield an AUROC of 0.963 and an AP of 0.587, an ex-
tremely high result with an increase in AUROC of over
0.05 above the vision-only baseline; this likely reflects
the high levels of leading language in this text (i.e., the

model may be learning textual shortcuts). Our high-
est level of text filtering (using Llama 3.1 to remove all
leading language; FFilt) on rows 9 and 10 give a 0.824
AUROC on the text alone; when combined with the der-
matoscopic image model, we achieve an AUROC of 0.955
and AP of 0.667. This result is higher than either modal-
ity alone (over 0.05 more than vision-only and more than
0.1 more than the FFilt surgical consultation notes only).
We therefore argue that our efforts to remove leading lan-
guage have yielded a model and data scenario that uses
both modalities effectively, reducing the extent to which
one modality inappropriately short-cuts across the other.

As detailed in Table 2, the remaining three compo-
nents of clinical freetext contain significantly less leading
language. When we use only family history of skin cancer
(row 15) or exposure to sunlight (row 16), we find rela-
tively low classification performance (APs of 0.211 and
0.192, respectively). This implies that such text alone
does not offer much classifying power. The longer and
highly-descriptive ‘histories and observations’ freetext
(rows 11 through 14) contain very occasional leading lan-
guage in the form of casual references to an opinion of the
skin lesion e.g. “this mole is small and dark...”. As this
long-form freetext often contains typos and acronyms, it
is unsuitable to use a regular expression to filter it (lev-
els CFilt and DFilt). Therefore, we only consider the
unfiltered histories and observations (Orig; rows 11 and
12), and the direct removal of the occasional skin dis-
ease name via Llama 3.1 (FFilt; rows 13 and 14). We
find that the unfiltered histories and observations yields
an AUROC of 0.818, and the FFilt filtering an AUROC
of 0.782. This small difference is testament to the very
mild and occasional leading language contained in these
freetext fields.

The final 4 rows of the table (18 through 21) combine
all components of the clinical freetext and metadata with
and without images. We see from rows 18 and 19 that the
unfiltered text components yield results on par with the
unfiltered surgical consultation notes, with or without
the image as inputs. This highlights the significant power
of uncontrolled leading language and the ‘shortcutting’
it can facilitate. Row 20 shows that the full multimodal
combination of filtered text yields an AUROC of 0.870,
and the inclusion of images in row 21 giving an AUROC
of 0.948.

Supplementary Figures 5 and 6 show Integrated Gra-
dient explanations for our best multimodal model on a
subset of the ISIC 2020 [18, 19] dataset. Both figures re-
veal nuances in the freetext explainability, notably that
some importance is attributed to tabular feature names
(e.g., ‘fitzpatrick’). This partly reflects limitations of the
ISIC dataset, and the strengths of the dataset in this
paper: because ISIC lacks freetext, we generated syn-
thetic descriptions, potentially introducing artefacts into
both model outputs and model interpretability. This
phenomenon also relates to the way the Transformer ar-



chitecture handles attention, and suggests that the pres-
ence of a feature in text may carry some weight for the
model (e.g., the fact the Fizpatrick score is not missing
is information itself).

Despite these caveats, the freetext explanations ex-
hibit trends consistent with clinical reasoning. For in-
stance, in both figures, low Fitzpatrick skin types are
highlighted in green, indicating an association with ma-
lignant diagnosis. This is consistent with the higher
incidence of skin cancer in Fitzpatrick types I and II
[71]. Similarly, in Supplementary Figure 6, terms such
as ‘asymmetrical’ and the information that the lesion has
grown are emphasized, again reflecting clinical practice.

The image-based explanations also demonstrate
alignment with clinically relevant patterns. For exam-
ple, much of the highlighted image regions in Supple-
mentary Figure 6 are around lesion borders, mimicking
areas clinicians are trained to examine [72]. While it
is difficult to make further conclusions from these ex-
plainability images (it is difficult to know, for example,
what area of a lesion one would look at to decide if it
is asymmetric, or if you are assessing its colour), it is
encouraging that some logical conclusions can be drawn.
Although image attributions in Supplementary Figure 5
appear noisier, similar border-focused patterns emerge
in the second and third samples, while the fourth sample
shows concentrated attention on the lesion centre. The
noisier nature of benign diagnosis explanations may also
be due to there not (necessarily) being a defined set of
features that can diagnose one of the many possible be-
nign diagnoses - unlike malignant cases, there is a much
wider variety of benign diagnoses, each of which will have
its own diagnostic criteria, necessitating a wider range of
attribution maps. It is also important to note that ex-
plainability values can be high due to an image feature
being missing - e.g., that the lesion is small, or is not
shaped in a certain way - and that this could also ex-
plain the noisier nature of the benign samples.

Discussion

Our ultimate result is that a full multimodal combina-
tion of all relevant data modalities present in our skin
lesion data set, under the most thorough debiasing and
filtering techniques, yields a model with an AUROC of
0.948 and a specificity of 71.55% for the desired fixed sen-
sitivity threshold of 94.81%. We note that the sometimes
large confidence intervals for specificity are due to differ-
ences in model calibration between runs that occasion-
ally affect the performance of finding a suitable decision
threshold for a 94.81% sensitivity. The smaller confi-
dence intervals for AP and AUROC indicate the models
achieve similar levels of performance across all runs.

By analysing model error rates across patient age
and Fitzpatrick Skin Score (Figure 4), we have shown
that our Vision only models exhibit low levels of bias

across the protected characteristics we can measure in
our dataset, despite some bias being present in the train-
ing data. The low levels of bias shown on Fitzpatrick
Skin Scores is of particular importance, as it suggests the
model has successfully learned clinically relevant features
that are relevant to specific skin types [73, 74]. Supple-
mentary Figure 3 shows similar levels of bias across our
fully multimodal model, highlighting that the addition of
text and patient metadata to the model does not increase
model bias.

Our CFilt and DFilt filtering experiments used regu-
lar expressions to filter out all names of skin diseases and
then further the words ‘benign’ and ‘malignant’ respec-
tively (rows 4 through 7, Table 4). Though one might
assume that removing such forms of leading language
would result in a large performance drop, we found only
a small impact i.e., none of these experiments drop be-
low 0.939 AUROC. This motivates our much more thor-
ough and nuanced approach to control for components of
leading language. Our Semantic Tagging experiments in
Table 6 are crucial in empirically proving that synonyms
of language such as ‘refer to hospital’ (QRTH@) and ‘no
treatment recommendations’ (QNT@) retain nearly as
much classifying power as an outright diagnosis attempt.

These results underline the importance of thoroughly
analysing all training data for ML models, particularly
multimodal models which we have shown to be especially
susceptible to (modality) bias. The higher performance
of the models using unfiltered freetext underscores the
susceptibility of freetext modelling to exhibit data bias
and label leakage found in previous studies [42, 43]. Nev-
ertheless, through the application of our proposed free-
text pre-processing techniques we have also shown that
this data can greatly, and safely, improve the perfor-
mance of ML models for skin lesion classification. We
hope that the relative ease-of-use of our LLM-based text
pre-processing pipeline encourages its use across other
medical ML applications where the inclusion of freetext
could be beneficial to model performance.

Our work in this paper introduces the modality of
clinical freetext to the task of skin lesion classification.
‘We have demonstrated that certain pieces of clinical text
with leading language are a very powerful addition to a
multimodal classifier. We highlight subtle difficulties if
one wishes to control for such language to varying de-
grees, and have proposed an LLM based approach that
we show can successfully control for leading language.
We show that such efforts yield a significant performance
boost over using only visual inputs, demonstrating that
clinical freetext of many different types are powerful ad-
ditions to a skin lesion classification system. We have
also discussed how models trained with different levels of
text pre-processing could be deployed in different scenar-
ios. For example, our models trained at the FFilt level of
pre-processing may be suitable for deployment direct to
patients, whereas those trained at the CFilt/DFilt level



may be more appropriate within primary care, after an
initial clinical assessment. The high sensitivity achieved
by our models (Table 4 and Supplementary Figure 4)
ensures the models are suitable for clinical workflows,
where the cost of missing a skin cancer is much higher
than that of missing a true negative diagnosis.

As these models use dermatoscopic images as part of
their diagnosis, they would be best placed within primary
care to support improved referral efficiency to dermatol-
ogists. However, prior to their use in clinical practice,
more model evaluation is needed. Prospective analy-
sis of the use of the proposed models in clinical prac-
tice are required to fully understand their real-world im-
pact and performance. While our models achieve both
high sensitivity and specificity levels, our techniques are
tuned to a high sensitivity (i.e., reduce false negatives
and the number of missed cancers). Supplementary Fig-
ure 4 highlights that, in term of raw numbers, this comes
at the cost of many false positives as the benign case-
load overwhelms the malignant case-load. However, pre-
vious retrospective studies show that referrals of high-
risk lesions from primary care to dermatology services
have even higher false positive rates; in the UK, studies
have shown that up to 87% of patients referred by GPs
with suspected skin cancer will receive a benign diagnosis
at histopathology [75, 76, 6]. In comparison, at a fixed
sensitivity of 95% (compared to the 70-88% sensitivity
reported for primary care clinicians [6]), our proposed
techniques only have a false positive rate of 29%. This
further supports using this model in primary care to re-
duce false positives and improve the referral accuracy
beyond the current standard of care.

Nevertheless, direct comparisons of model and der-
matologist/primary care physician performance (de-
pending on the type of model being used) are necessary
to uncover our proposed techniques’ impact on clinical
workflows. Additionally, although our dataset was col-
lected from a range of clinics across the UK, our model’s
generalisability to other datasets (with different demo-
graphics and case mix) should also be investigated in
future work. The application of model explainability
techniques have shown that these attribution methods
can be used to help explain model decisions, possibly
aiding clinical decision making further. However, these
techniques alone are not sophisticated enough to ensure
models are consistently applying clinically relevant deci-
sions, and future work should develop techniques to ex-
plore this. Furthermore, patients and the public should
be involved in these prospective evaluations to ensure the
model’s impact on the patient experience is explored.

Conclusion

Thorough and component-wise analysis throughout our
benchmark aims to inform future research using clini-
cal freetext with a variety of different data scenarios.
We wish to encourage future research integrating clin-

ical freetext into medical visual classification scenarios
to carefully consider components of text they wish to
integrate, and to be vigilant and resourceful in any pre-
processing they consider. By incorporating appropriately
filtered clinical freetext from electronic health records we
have demonstrated a boost in performance on top of vi-
sion only models that in the future could be used improve
the referral efficiency and diagnostic accuracy of skin le-
sions within primary care.
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Figure Information

For each figure, the title is in bold, followed by the figure description and any acronyms used.

Figure 1 - Patient inclusion/exclusion criteria. Filtering performed on our anonymised dataset.

Figure 2 - Dataset patient demographics. Figures reporting (a) patient sex, age, and (b) Fitzpatrick Skin
Score.

Figure 3 - Model performance across all experiments. Horizontal line plot of AUROC scores. The bars,
which are coloured by experiment group, report the mean AUROC across 5 runs for that experiment. Error
bars indicate the 95% confidence interval for the mean, and the AUROC for each individual run is plot as a
grey dot. AUROC: Accuracy under the Receiver Operating Characteristic curve; FSS: Fitzpatrick Skin Score;
IMDD: Index of Multiple Deprivation; MD: Metadata; V: Vision; Surg Cons: Surgical Consultation Notes;
Orig: Original text; CFilt: ConditionFiltered text; DFilt: DiagnosisFiltered text; FFilt: FullyFiltered text;
Hist & Obs: History and Observations; Fam Hist of Skin Cancer: Family History of Skin Cancer.

Figure 4 - Model bias across patient subgroups. Vision only model error rates across (a) patient age and
(b) patient Fitzpatrick Skin Score (on test set, 1,123 images).
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Figure 1: Filtering performed on our anonymised dataset.
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Figure 2: Figures reporting (a) patient sex, age, and (b) Fitzpatrick Skin Score.
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AUROC Scores for Different Models
Vision Only Experiment Group
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Figure 3: Horizontal line plot of AUROC scores. The bars, which are coloured by experiment group, report the
mean AUROC across 5 runs for that experiment. Error bars indicate the 95% confidence interval for the mean, and
the AUROC for each individual run is plot as a grey dot.
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Figure 4: Vision only model error rates across (a) patient age and (b) patient Fitzpatrick Skin Score (on test set,
1,123 images).
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Dataset ‘Year‘ Size Data Sources
Image Metadata Text
DBDermo-MIPS [10] 1999 424 v
Interactive Atlas of Dermoscopy [11] | 2004 | ~2000 v
PH2 [12, 7] 2013 | 200 7
Dermofit Image Library [13, 78] 2013 | 1300 v
7-Point Criteria Database [23, 79] 2017 | 2045 v
HAM10000 [14, 15] 2018 | 10,015 v a4
BCN20000 [16, 17] 2019 | 20,000 | v |/ |V
ISIC 2017 [80, 19] (Tasks 1,2,3) 2017 | 2600 7
ISIC 2018 [14, 81, 10] (Tasks 1,2) 2018 | 3695 7
ISIC 2018 [14, 81, 1] (Task 3) 2018 | 11,720 |
ISIC 2019 (14, 80, 16, 10] (Tasks 1,2) 2019 | 33560 | |/ |V
ISIC 2020 [18, 19] 2020 | 43,683 v a4
Ours 2025 | 5481 v IV NN

Table 1: A comparison of skin lesion classification datasets. Our dataset includes additional patient metadata and,
most notably, freetext clinician notes.
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History and

Family History of

Exposure to

Surgigcal Consultation Notes

Observations Skin Cancer Sunlight
Average Length 47.84 words 2.82 words 4.40 words 23.86 words
Leading Language | Occasional (Table 3) None None Substantial (Table 3)
Lexical Diversity 94.5% 78.2% 91.4% 84.0%
Medical Density 3.3% 2.2% 3.0% 26.0%
Total Vocab 6909 words 1527 words 2410 word 1828 words
Examples “Patient says lesion is | “None”; “Works outside” “lesion right side of nose looks like

getting darker, wider,
raised, flaky, smooth,
not itchy”

“It is raised and dark
in colour. It has
grown in size.”

“No history”
“Patient’s 3rd cousin
has skin cancer”
“father had cancer-
ous mole removed
from leg”

“Used to live in
Brazil”

“travels abroad on
holidays”

“doesn’t wear sun
cream”

benign seborrhoeic keratosis. no
treatment is required.”
“Basal cell carcinoma,
hospital”

refer to

Table 2: Statistics and examples for the 4 components of clinical freetext used in our experiments. Lexical diversity
is the average proportion of unique words in a each component. Medical density is the average proportion of words
in each sentence that are ‘medical’ terms from the medical subject headings (MeSH) [82].
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Preprocess| Relevant Text Description
Level Components
Orig Surgery Consult Notes; No changes or filtering.
History & Observations;
Exposure to Sunlight;
Family History of Cancer;

Basic Preprocessing (RegEx)

CFilt Surgery Consult Notes; Remove the names of any skin condition
DFilt Surgery Consult Notes; Lvl 2 + remove the words ‘benign’ and ‘malignant’
Advanced Preprocessing (Manual/LLM)
STag Surgery Consult Notes; Replace the following 6 components of text with tags. Any combination of

these tags can then be removed or included at training time.
e @DB@: Benign diagnosis.
e @DM@: Malignant diagnosis.
e QRTH@: Any explicit ‘refer to hospital’ or ‘refer for biopsy’.
e QNT@: Any words to the effect of ‘no treatment required’.

e @QT@: Any recommendation of non-biopsy treatment e.g. creams, avoid

sunlight.
FFilt Surgery Consult Notes; Remove any language implying, treatment, or any of the text above are re-
History & Observations; moved. Only statements of known facts are allowed.

Table 3: Levels of preprocessing of the clinical freetext used for thorough analysis of performance. Translation from
raw text to STag and FFilt were done via a Llama 3.1 88 LLM model with manual supervision.

22



Surgery History & Family Exposure Sex | Age | FSS | IMDD Averaged Metrics (5 Runs) Label Key
Consulta- Observa- History of to Sunlight
tion Notes tions Skin Cancer
Vision Text Components AP Spec Sens | AUROC
v 0.547 | 62.60% | 94.81% 0.909 Vision Only
+0.017 | £2.85%| +0.00%| =+0.006
Orig 0.587 | 90.80% | 94.81% | 0.963 Surg Cons
+0.039 | +£2.07%| +0.00%| =+0.006 (Orig)
v Orig 0.802 | 92.03% | 94.81% | 0.980 V+Surg
+0.047 | £1.45%| +0.00%| =+0.004 Cons (Orig)
CFilt 0.424 | 86.08% | 94.81% 0.944 Surg Cons
+0.021 | +£1.64%| +0.00%| =+0.005 (CFilt)
v CFilt 0.658 | 89.22% | 94.81% | 0.967 V+Surg
+0.096 | +£1.16%| +0.00%| =+0.007 Cons (CFilt)
DFilt 0.405 | 83.59% | 94.81% 0.939 Surg Cons
+0.021 | £4.38%| £0.00%| =+0.008 | (DFilt)
v DFilt 0.726 | 89.67% | 94.81% | 0.970 V+Surg
+0.068 | +3.21%| +0.00%| =+0.006 Cons (DFilt)
STag Ablation of Leading Language
(Lv14T) Explored in Table 6
FFilt 0.285 | 25.18% | 94.81% | 0.824 Surg Cons
+0.005 | £4.95%| £0.00%| +0.013 | (Lvl4)
v FFilt 0.667 | 79.45% | 94.81% 0.955 V+Surg
+0.026 | £7.04%| £0.00%| +0.007 | Cons (Lvl4)
Orig 0.267 | 38.01% | 94.81% 0.818 Hist & Obs
+0.012 | +12.3%| +0.00%| +0.035 | (Orig)
v Orig 0.616 | 50.75% | 94.81% 0.898 V+Hist &
+0.043 | £4.58%| +0.00%| +0.020 | Obs (Orig)
FFilt 0.257 | 25.76% | 94.81% | 0.782 Hist & Obs
+0.016 | £7.74%| +0.00%| +0.013 (Lvl4)
v FFilt 0.560 | 62.18% | 94.81% 0.908 V+Hist &
+0.02 | £8.12%| +0.00%| +0.011 Obs (Lvl4)
v 0.211 | 2.39% | 94.81% | 0.705 Fam Hist of
+0.003 | £4.10%| +0.00%| =+0.007 | Skin Cancer
v 0.192 | 15.70% | 94.81% 0.699 Exposure to
+0.018 | £4.25%| +0.00%| +0.017 | Sunlight
v Ablation of Metadata Explored
in Table 5
Orig Orig v v v v v v 0.734 | 91.72% | 94.81% | 0.976 All Text
+0.081 | £1.59%| +0.00%| =+0.005 (Leading
Language)
v Orig Orig v v v v v v 0.747 | 87.06% | 94.81% | 0.970 V+AIl Text
+0.094 | +6.32%| +0.00%| =+0.009 (Leading
Language)
FFilt FFilt v v v v v v 0.444 | 33.69% | 94.81% | 0.870 All Text (No
+0.033 | £10.9%| +0.00%| +0.028 | Leading
Language)
v FFilt FFilt v v v v v v 0.679 | 71.55% | 94.81% | 0.948 V+All Text
+0.038 | £15.6%| +0.00%| =+0.013 (No Leading
Language)

Table 4: The main results table for the paper.

Each result is comprised from 5 runs with exactly the same

experimental setup and hyperparameters. Mean and the 95% confidence interval of each metric is reported. The
label key entries correspond to plots in Figure 3. Red and green cells indicate dermatoscopic images and patient
metadata, respectively, were included. Blue cells indicate freetext was included, with darker blues designating
higher levels of freetext filtering. AP: Average Precision (baseline AP: 0.07); AUROC: Area Under the Receiver
Operating Characteristic Curve.
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Age | Sex | FSS | IMDD Averaged Metrics (5 Runs) Label
Key
Vision Text Components AP Spec Sens | AUROC
v 0.188 | 23.02% | 94.81% | 0.749 Age
+0.009 | £5.44%| +0.00%| =+0.010
v 0.113 —% —% 0.557 Sex
+0.046 | £+ -% | £+ - % +0.04
v 0.178 | 6.31% | 94.81% | 0.621 FSS
+0.002% £7.29%| £0.00%| =+0.015
v 0.135 —% —% 0.697 IMDD
+0.00%| £-% | £ - % +0.00
v v v v 0.318 | 26.12% | 94.81% | 0.793 All MD
+0.035 | £3.36%| +0.00%| =0.020
v v v v v 0.636 | 65.58% | 94.81% | 0.923 V+All
+0.034 | £5.45%| +0.00%| =+0.015 | MD

Table 5: Metadata inclusion table. The label key entries correspond to plots in Figure 3. Each result is comprised
from 5 runs with exactly the same experimental setup and hyperparameters. Mean and 95% confidence interval
width of each metric is reported. Where sensitivity and specificity values are unavailable, the models were unable
to achieve 95% sensitivity without consistently predicting the positive class. AP: Average Precision (baseline AP:

0.07); AUROC: Area Under the Receiver Operating Characteristic Curve.
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Heavily Heavily Implies Implies Heavily
Implies Implies Benign Malignant Implies
Benign Benign Malignant
Benign No Treatment Treatments Refer to Malignant Averaged Metrics (5 Runs) Label
Diagnosis Required Recommended Hospital Diagnosis Key
(@DB@) (@NTQ) (@T@) (@QRTH@) (@DM®@)
Vision Surgical Consultation Notes: STag AP Spec Sens | AUROC
0.285 25.18% | 94.81% 0.824 No
+0.005 | £4.95%| +£0.00%| =+0.013 | Tags
v 0.667 | 79.45% | 94.81% 0.955
+0.026 | £7.04%| +£0.00%| =+0.007
v 0476 | 74.76% | 94.81% | 0.931 QDB@
+0.008 | +£0.796% +0.00%| =+0.002
v 0.304 | 44.99% | 94.81% | 0.858 QNT@
+0.008 | +14.45% 40.00%| +0.011
v 0.280 | 16.42% | 94.81% | 0.798 aTa
+0.013 | £9.89%| +0.00%| =+0.031
v 0.307 | 40.08% | 94.81% 0.857 @QRTH@
+0.016 | +£3.32%| +£0.00%| =+0.019
v 0.533 | 75.72% | 94.81% 0.943 @DM@
+0.010 | £0.982% +0.00%| =+0.006
v v 0.531 | 75.47% | 94.81% | 0.942
+0.004 | +0.758% +0.00%| =+0.003
v v v 0.305 | 39.24% | 94.81% | 0.853
+0.0059| +10.09% +0.00%| =+0.014
v v v v v 0.531 | 75.66% | 94.81% | 0.942 All
+0.004 | +£0.479% 40.00%| +0.003 Tags
v v v v v v 0.779 | 89.76% | 94.81% | 0.975 V+All
+0.017 | +3.82%| +0.00%| =+0.004 Tags
Table 6: Results (mean + 95% confidence interval width) for STag text and their accompanying tags. The label

key entries correspond to plots in Figure 3. Rows with no STag show results when all 5 components of leading text
have been removed. Red cells indicate experiments with dermatoscopic images included and blue cells those with
the corresponding tag included. Text colour indicates the type of semantic tagging used. AP: Average Precision
(baseline AP: 0.07); AUROC: Area Under the Receiver Operating Characteristic Curve.
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