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A B S T R A C T

Recent advancements in deep learning have significantly improved the accuracy of multi-person pose
estimation from RGB images. However, these deep learning methods typically rely on a large number of deep
refinement modules to refine the features of body joints and limbs, which hugely reduce the run-time speed
and therefore limit the application domain. In this paper, we propose a feature transfer framework to capture
the concurrent correlations between body joint and limb features. The concurrent correlations of these features
form a complementary structural relationship, which mutually strengthens the network’s inferences and reduces
the needs of refinement modules. The transfer sub-network is implemented with multiple convolutional layers,
and is merged with the body part detection network to form an end-to-end system. The transfer relationship is
automatically learned from ground-truth data instead of being manually encoded, resulting in a more general
and efficient design. The proposed framework is validated on the multiple popular multi-person pose estimation
benchmarks - MPII, COCO 2018 and PoseTrack 2017 and 2018. Experimental results show that our method
not only significantly increases the inference speed to 73.8 frame per second (FPS), but also attains comparable
state-of-the-art performance.

1. Introduction

Human pose estimation is a computer vision problem that aims at
recovering the posture of a person via localising joints and rigid parts
from images. The obtained pose information can be used to inform
other computer vision problems such as abnormal behaviour detection,
human behaviour analysis and action recognition. It can also be used in
a variety of applications such as smart environments, human–computer
interaction, augmented reality and virtual reality.

Over the past few years, with the development of deep learning,
human pose estimation from RGB images has made significant progress.
For scenes containing multiple people, the estimation accuracy has in-
creased by 35% (Andriluka et al., 2018b). Typical deep learning-based
methods for pose estimation consists of two modules — joint detection
and refinement (Wei et al., 2016). The joint detection module generates
joint candidates for each joint type. Since different body joints may
have similar appearances, such as the left and the right knees, using the
joint detection module alone is not enough to distinguish all the joints.
The refinement module is therefore implemented, which takes the
output from the joint detection module and introduces a higher-level
context to improve the decision process. Such a module usually consists
of multiple stacked convolutional layers to increase the receptive field,
thereby obtaining more contextual information. In Cao et al. (2017), 6
stages of refinement modules are implemented, with each stage consist-
ing of 7 convolutional layers. In Newell et al. (2017), 4 stages of stacked
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hourglass-like refinement modules are used, with each hourglass con-
sisting of 45 convolutional layers. As indicated in their experiments,
the improvement does not increase linearly with the number of refine-
ment modules. In general, the sub-sequence modules contribute smaller
accuracy improvements. Additionally, if further integrating with other
extension modules, such as 3D pose estimation (Tome et al., 2017),
video-based pose estimation and tracking (Andriluka et al., 2018a),
such a large number of refinement modules, together with the backbone
network, will constrain the application areas due to speed and memory
limitations, causing difficulties in training an end-to-end system. This
motivates us to improve the potential of the backbone network and to
propose a more efficient form of convolutional feature utilisation.

Our studies indicate that with powerful backbone networks, such
as VGG-19 (Simonyan and Zisserman, 2015) and ResNet-50 (He et al.,
2016), joint detection can already obtain acceptable localisation per-
formance. The major source of error is the confusion between the
left and right joints of the same type, as illustrated in Fig. 1(a). In
order to address this, additional information that can strengthen the
identification of human body parts is required. As analysed by Chu et al.
(2016), different joints and limbs are highly correlated at lower feature-
levels. In theory, the feature maps of neighbouring joints and limbs
should be concurrently activated. For example, the left thigh, left hip
and left knee typically have coincident activation responses, and any
two of these three parts can sustain the discrimination of the third one.
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While this kind of clues should be capable of constructing a comple-
mentary relationship for inference, previous methods of multi-person
pose estimation consider the joints independently, failing to harness
the power of the concurrent feature information for pose estimation
reinforcement.

In this paper, we propose a feature transfer structure to exploit the
complementary feature information between joints and limbs, which
effectively strengthens the recognition of human body parts. The pro-
posed feature transfer structure has two major functions. First, it trans-
lates the activated region of one joint to that of the next adjacent joint
in their respective feature maps. Such translated features can then be
formed as complementary features. Second, it converts the features
between the joint type and the limb type in both directions, facilitating
feature fusion. Since the feature translation can be regarded as a matrix
translation operation, and the converted features are represented as
convolutional features, the feature transfer structure can be imple-
mented with convolutional layers and its parameters can be learned
effectively by backpropagation (Goodfellow et al., 2016a). This allows
us to merge the feature transfer structure into the pose estimation
network using convolutional layers, forming an end-to-end system. On
top of this, our network automatically learns transfer relationships from
supervisory data, and does not require manually defined neighbour
joint information as in Yang et al. (2016) and Chu et al. (2016). This
enables a more general design with fewer network layers.

We perform experiments on three popular multi-person pose es-
timation datasets, MPII (Andriluka et al., 2014), COCO 2017 (Lin
et al., 2014) and PoseTrack 2017 and 2018 (Andriluka et al., 2018a).
With only 4 stacked convolutional modules for feature transfer and
1 refinement module for combining context information, our method
achieves comparable performance to existing approaches with two
times more weighting parameters. This indicates the effectiveness of
feature transfer in improving the accuracy of pose estimation. With the
benefit of the decreased number of parameters, the forward inference
speed of the whole network achieves 42.2 FPS, and further attains 73.8
FPS by optimising the implementation, when using an input size of
368 × 432 on a single NVIDIA Tesla P40 GPU. This enables real-time
applications with consumer-level hardware. We open our source code
for further research and development in the field.

The contributions of this work are summarised as follows:

• We propose a new design of a multi-person pose estimation
network by introducing feature transfer, which utilises the com-
plementary features of joints and limbs to strengthen the iden-
tification of human body parts. This reduces the needs of deep
refinement modules.

• We propose and validate an implementation strategy of the fea-
ture transfer sub-network. First, the sub-network is implemented
with convolution layers and therefore is mergeable with the
backbone pose estimation network to form an end-to-end sys-
tem. Second, it learns the transfer relationship automatically
from ground-truth information, resulting in a more general and
efficient implementation.

• Using our open-source implementation, we perform extensive
experiments on three popular datasets — MPII, COCO 2018 and
PoseTrack 2017 and 2018, which demonstrate that our system
significantly improves the run-time speed while attaining compa-
rable state-of-the-art performance, enabling real-time applications
with consumer-level hardware.

The source code of our system can be downloaded at our project
webpage: http://info.hubertshum.com

The rest of the paper is organised as follows. Section 2 introduces
the related work. Section 3 describes our proposed approach. The
experiment dataset, experiment results and analysis are presented in
Section 4. The work is concluded in Section 5.

Fig. 1. Two examples of activation maps before and after feature transfer. (a) The
backbone network can localise (upper) the shoulder joints and (lower) the ankle joints,
but cannot distinguish the left/right joint type. (b) After adding the feature transfer
sub-network, the discrimination power of the networks is strengthened and the joint
detector can recognise (upper) the right shoulder and (lower) the left ankle.

2. Related work

The problem of human pose estimation has a long history in com-
puter vision. Before the discovery of deep convolutional features, pose
estimation research mainly focused on building local or global human
body descriptive models (Andriluka et al., 2009; Yang and Ramanan,
2011; Gkioxari et al., 2013; Pishchulin et al., 2013; Sapp and Taskar,
2013) and predicting body parts based on predefined hand-crafted
features. Recent advancement in deep learning significantly improves
the performance. Since a comprehensive review of pose estimation
approaches is beyond the scope of this paper, here, we focus on some
recent work based on deep neural networks.

2.1. Single person pose estimation

Earlier human pose estimation research mainly focuses on the case
of a single person. It considers a cropped region that contains the
person in order to predict the corresponding joint locations. In this case,
prediction does not involve joint grouping.

Convolutional neural networks (CNNs) play an important role in
pose estimation. Toshev and Szegedy (2014) use CNNs and a cascaded
structure to predict and refine the joint locations. Tompson et al. (2014)
combine CNNs with a Markov random field to explore the spatial
constraints of body parts. Wei et al. (2016) propose stacking multi-
stage refinement modules of fully convolutional networks to expand
the receptive field, thereby obtaining the context information that sup-
ports the inference of joints. Different from (Wei et al., 2016), Newell
et al. (2016) design stacked hourglass-like networks to recover the
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spatial resolution of the output heatmaps while maintaining the high-
level semantic features. Based on (Newell et al., 2016), Chu et al.
(2017) introduce the conditional random field and visual attention
models to capture different granularity information. Yang et al. (2017)
introduce feature pyramids to obtain multi-scale joint feature informa-
tion. Kawana et al. (2018) propose clustering different poses before
training the networks. Hong et al. (2015, 2016) propose 3D pose
recovery methods based on hypergraph learning. Hong et al. (2014)
adopt silhouette-based locality-sensitive sparse coding to recover 3D
human pose.

Structured models are further introduced to capture the human
hierarchy structure. Chang and Lee (2018) propose a conditional ran-
dom field model to measure the plausibility of human poses. Yang
et al. (2016) construct message passing layers for describing the pair-
wise relationship among body parts. In comparison, Chu et al. (2016)
build a tree-structured model to translate the feature information using
convolutional layers from one joint to another neighbouring joint.

Our method also develops a structured model for human pose.
However, instead of manually defining the paths of message passing
for different joints as in Yang et al. (2016) and Chu et al. (2016), our
method learns the joint-limb relationships autonomously from ground-
truth information in an end-to-end configuration. This results in a more
general and efficient implementation.

2.2. Multi-person pose estimation

Estimating the poses of multiple people in a scene is more practical
in real-world applications. Apart from challenges such as the com-
plexity of appearance, the variety of gestures, occlusions and multiple
scales, the inclusion of multiple people in the same image introduces
another challenge — the system has to distinguish not only the type
of the body part but also the person that the part belongs to. There
are two main categories of solutions: top-down methods and bottom-up
methods.

2.2.1. Top-down methods
Top-down methods can be seen as a two-stage pipeline from global

(i.e. the bounding box) to local (i.e. joints). The first stage is to perform
human detection and to obtain their respective bounding boxes in the
image. The second stage is to perform single person pose estimation
for each of the obtained human regions. Fang et al. (2017) propose
a symmetric spatial transformer network and a parametric pose non-
maximum suppression to handle the inaccurate and redundant human
detection bounding boxes. He et al. (2017) deploy an interpolation ap-
proach in the region pooling process to generate more accurate feature
maps, which compensates for the effect of region pooling caused by
missing feature information. Papandreou et al. (2017) directly increase
the output scale of the region pooling by up-sampling the output to
a much larger size than that of He et al. (2017) (257 × 353 𝑣𝑠.
56 × 56). Experiments show that this simple strategy is very effective
in improving the accuracy. Similarly, Xiao et al. (2018) deploy a
few deconvolutional layers on a backbone network to increase the
resolution of feature maps and results in obtaining higher accuracy. Sun
et al. (2019) propose a high-resolution network to obtain stronger
representations and achieve top results on a wide range of vision
tasks. These results indicate that the localisation accuracy of pose
estimation greatly relies upon high-resolution feature information due
to the generally small size of the body parts. Based on He et al. (2017)
and Alp Güler et al. (2018) design a structure that merges the feature
information from other tasks such as 3D pose detection, for better 2D
pose estimation during the training and forward inference.

For top-down methods, high-precision feature maps of human re-
gions are important to maintain the accuracy of joint localisation. We
also notice that the run time of these methods is affected by both the
speed of human detection and that of single person pose estimation.
The latter is proportional to the number of people in the view, and is
problematic for applications requiring a consistent frame rate.

2.2.2. Bottom-up methods
In order to handle the problem of processing speed, bottom-up

methods have received increasing attention from researchers in recent
years. They approach this problem from the opposite direction, in
which they detect all of the body parts before grouping and associating
the parts with the relevant person. Pishchulin et al. (2016) modify a
general object detector to detect body parts and partition body part
candidates into person clusters by solving an integer linear programme
problem. Based on Pishchulin et al. (2016) and Insafutdinov et al.
(2016) introduce an incremental optimisation strategy to improve the
grouping speed. Belagiannis and Zisserman (2017) validate that CNNs
can generate heatmaps for both body joints and limbs using continuous
regression. Levinkov et al. (2017) consider the articulated human body
pose estimation as a combinatorial optimisation problem and propose
two local search algorithms that offer a feasible solution at given time
constraint. Varadarajan et al. (2018) exploit the inherent structure of
the human body to decrease the complexity of the body part grouping
model. Newell et al. (2017) propose learning both body part detection
and grouping in the CNNs simultaneously. They also indicate that the
accuracy bottleneck of pose estimation is not joint grouping but joint
prediction. They find that by replacing the joint predictions with the
groundtruth, the final pose estimation results can be improved from
60% to 94%, which is close to saturation. Cao et al. (2017) propose a
limb descriptor known as the part affinity fields (PAFs), which provides
additional limb information including the type, direction and length
for better group assignments. They further deploy multiple very deep
refinement modules to obtain accurate joint and limb information.

Our paper follows the bottom-up approaches as they have the
advantage of a consistent frame speed by detecting all body parts of
all people in a single shot. Motivated by Cao et al. (2017), we also
employ a similar limb descriptor as it has high-efficiency in body part
grouping. However, we introduce the mutually supportive relationship
between joints and limbs for pose estimation. Experiments show that
this structure effectively improves the accuracy of body part detection
as shown in Section 4.6.2.

2.2.3. Multi-task learning
Multi-task learning is an approach to solve multiple learning tasks

at the same time, while exploiting their shared representations and
differences (Caruana, 1997). Knowledge (feature) transfer is a related
concept to multi-task learning. However, shared representations are de-
veloped concurrently in multi-task learning while feature transfer is to
learn a sequentially shared representation. There are three equivalent
ways to learn a shared representation, which are via a regulariser (Cilib-
erto et al., 2015), an output metric (Dai et al., 2016) and an output
mapping (Kim and Xing, 2010), respectively. In the framework of
CNNs, we use an output metric and learning the structure of feature
transfer by the network outputs and loss to facilitate the learning
process. In our experiments, we validate that joint and limb’s feature
can be transferred into the type of each other.

3. The proposed deep feature transfer network

The proposed method consists of four components, which are vi-
sualised in Fig. 2. The first one is the body joint and limb detector,
which employs fully convolutional layers to regress the location of each
body part in the image (Section 3.1). The second component is the
feature transfer networks, where the feature information of body joints
and limbs are transferred into the representations of each another to
strengthen their feature discrimination power (Section 3.2). The third
component is a single refinement module (Section 3.3). Since both body
part detector and feature transfer networks only handle the locally
interested body parts, such a module helps to capture global context
information and improve prediction accuracy. The refined feature in-
formation is used to produce the body joint and limb heatmaps, which
are input into the final component - the body part grouping model
(Section 3.4). It matches each pair-wise body joint according to the
limb information and the matched pair-wise joints are assembled into
a full-body group for each person in the image.
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Fig. 2. The architecture of our proposed method includes 4 components, which are a
part detection network, a feature transfer sub-network, a refinement module and joint
grouping. The backbone network takes an image as input and outputs the abstract
features. Then the feature information enters the two detection branches, which are
coloured in orange and green, respectively. The transfer sub-network (blue blocks)
extracts features from Conv-4 and outputs the transferred features to merge with the
features of the detection branch. The merged features produce the score maps for both
joint and limb branches. At last, the refinement module is used to capture context
information to refine the results. (Best viewed in colour). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

3.1. Body joint and limb detection

Since deep CNNs possess the capacity to effectively deal with a wide
variety of objects and have been validated in many vision-related tasks,
such as object detection (Liu et al., 2016) and segmentation (Long et al.,
2015), we deploy deep CNN in our method for pose estimation. To
avoid interference, we set a two-branch head network for multi-task
learning. Referring to Fig. 2, we use the first ten layers of VGG-
19 (Simonyan and Zisserman, 2015) as the backbone network to extract
general low-level convolutional features. Then, the feature streams
enter two branches, namely the joint branch and the limb branch,
for the respective high-level detection task. Each branch consists of
5 convolutional layers. Each of the first four convolutional layers is
followed by a ReLU layer (Nair and Hinton, 2010). The only exception
is the fifth convolutional layer, Conv-5, as it is the output layer of the
body part score maps and does not require nonlinear rectification.

There are two possible methods for body parts detection. The first
one considers the localisation of body parts as a problem of discrete

classification, which adopts a univariate loss function 𝓁(ℎ, (𝑥, 𝑦)) =
𝛱[ℎ(𝑥)≠𝑦] to learn a hypothesis ℎ ∶ 𝑥 → 𝑦 that assigns a body part
label 𝑦 for each pixel in the input image 𝑥 (e.g., softmax Goodfellow
et al., 2016b). The second method is to fit a continuous regression
function 𝓁(ℎ, (𝑥, 𝑦)) = (ℎ(𝑥) − 𝑦)2 to generate predictions. In CNNs,
this corresponds to training the network that produces the confidence
values of different object types at each pixel position. Since the classi-
fication method cannot provide a smooth transition for the pixels near
the annotated joints, we adapt the regression method in predicting the
confidence maps of body parts.

We use J and L to represent the joint and limb confidence maps,
where 𝐉 = (𝐉1,… , 𝐉𝑖,… , 𝐉𝑚), 𝐋 = (𝐋1,… ,𝐋𝑗 ,… ,𝐋𝑛), 𝑖 ∈ [1, 𝑚], 𝑗 ∈
[1, 𝑛], 𝑚 and 𝑛 are the numbers of the predefined joint and limb types
respectively, 𝐉𝑖 ∈ R𝑤×ℎ, 𝐋𝑗 ∈ R𝑤×ℎ×2, 𝑤 and ℎ are the width and height
of the confidence maps. For the joint ground-truth confidence maps, to
smooth the training loss, a Gaussian distribution is generated around
the location of each annotated visible joint p∗𝑖,𝑐 ∈ R2, 𝑐 ∈ [1, 𝑘], and 𝑘 is
the number of visible joints of type 𝑖. The ground-truth value 𝐉∗𝑖 (p) at
position p ∈ R2 on the ground-truth confidence maps is defined as:

𝐉∗𝑖 (p) = max
𝑐∈[1,𝑘]

exp

(

−
‖p − p∗𝑖,𝑐‖

2
2

𝜎2

)

(1)

where 𝜎 is the variance. For the limb ground-truth score maps, there are
several similar representation methods that can be used to describe the
limb such as the limb spot (Belagiannis and Zisserman, 2017) and the
part affinity fields (PAF) (Cao et al., 2017). To facilitate the comparison
with PAF, we select PAF as the limb descriptor in our system. This
method represents a limb with an ellipse between two neighbouring
joints. The pixels within the ellipse are considered to be the limb region.
Each of the pixels has a unit vector that points to the next joint. For
the pixels outside the limb region, the vector is zero-valued. The limb
ground-truth confidence maps are defined as:

𝐋∗
𝑗 (p) =

⎧

⎪

⎨

⎪

⎩

(p∗𝑖1 ,h − p∗𝑖2 ,h)

‖p∗𝑖1 ,h − p∗𝑖2 ,h‖2
, if pixel p on the limb of person h

0 otherwise
(2)

The loss functions of the branches are defined as:

𝑒𝐉 =
𝑚
∑

𝑖=1

∑

p
W(p)‖𝐉𝑖(p) − 𝐉∗𝑖 (p)‖

2
2 (3)

𝑒𝐋 =
𝑛
∑

𝑗=1

∑

p
W(p)‖𝐋𝑗 (p) − 𝐋∗

𝑗 (p)‖
2
2

(4)

where W(p) is the binarized mask to ignore unannotated people in the
loss computation.

3.2. Feature transfer

As mentioned in the introduction, the features of body joints and
limbs should be concurrently activated. This complementary informa-
tion can be used to mutually support the inference of both joints and
limbs. Thus, we design a transfer sub-network to cross-transfer the
features from one branch to another, which is visualised as the blue
blocks in Fig. 2.

Let Ab be the feature maps of the branch b, the transferred feature
maps, AT

b , is calculated as:

AT
b = 𝐹 (Ab ⊗ 𝑓T) (5)

where 𝑓T is the filter bank for feature transfer, ⊗ is a convolution
operation, and 𝐹 is the rectified linear unit.

We observed that the largest distance between adjacent joints on the
input training images of networks is within 100 pixels. Therefore, we
implement the transfer sub-network with 4 transfer blocks to provide
the corresponding receptive field, where each block contains 3 convo-
lutional layers with a kernel size of 3 × 3 and the output features of
them are aggregated to strengthen feature propagation.
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Fig. 3. Comparisons of different feature transfer models. (a) Tree model (Chu et al., 2016), which has a predefined tree structure. (b) Loopy model (Yang et al., 2016), which
includes predefined loop feature flows. (c) Our one-shot transfer model, which requires no predefinition.

Fig. 4. Examples of feature maps extracted from Conv-1 and Conv-4 of the joint and limb branches respectively. (a1), (b1), and (c1) show example feature maps of Conv-1 and
Conv-4 of joint branch. (a2), (b2), and (c2) show example feature maps of Conv-1 and Conv-4 of limb branch. For both branches, the features of Conv-1 are more abstract, while
that of Conv-4 are more distinctive, as highlighted.

We design a more effective feature transfer scheme compared to
existing works. As illustrated in Fig. 3, Chu et al. (2016) utilise a
predefined tree structure with over 100 convolutional layers, and Yang
et al. (2016) utilise a predefined loopy model, to transfer the feature
maps between neighbour joints for a single person. Both models ex-
plicitly encode the one-to-one relationship between joints. Adapting
such single person models to deal with multiple people implies that a
much larger network structure is required. As a solution, we transfer
the feature maps of all joints and that of all limbs in a single shot
using four convolution modules, in which the feature maps of different
joints and that of different limbs are represented as two respective
stacked blocks. This design allows the network to autonomously learn
the complementary features while significantly reducing the number of
layers required, thereby saving the computation cost.

Here, we explain how we select the suitable convolutional layer for
feature transfer. We analyse the feature maps extracted from Conv-1
and Conv-4 of the joint branch and the limb branch respectively. Some
examples are shown in Fig. 4. We observe that the features in Conv-
1 of both branches are abstract and less distinctive. This shows that
the feature maps cannot effectively represent the joints and the limbs.

In contrast, Conv-4 of the joint and the limb branches shows more
distinctive and concrete joint and limb features respectively. We can
observe that the concreteness of the feature maps increases with the
convolution depth, and that Conv-4 of each branch produces results
that are distinctive enough for feature transfer. Therefore, we connect
Conv-4 to the transfer sub-network for feature transfer. Notice that
Conv-5 is the output layer which has only the confidence and location
information, and is not suitable for feature transfer. In Section 4, we
give quantitative comparisons to validate the selection of the transfer
layer.

Through the transfer sub-network, the features are transferred into
the feature type of the other branch, and are merged with the features
of the other branch. Because the transfer sub-network is composed of
convolutional layers, it can be combined into the backbone network
to form an end-to-end system. Qualitative and quantitative results
are provided in Section 4 to show that the transfer sub-network can
convert and translate the features between the branches. We also show
that combining the transferred features with the detection features
effectively improves the performance of pose estimation as shown in
Section 4.6.2.
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3.3. Refinement with context information

Since the previous body-part detector and feature transfer networks
only handle the locally interested body parts, it is necessary to include
global context information to further improve the prediction perfor-
mance. As analysed in Section 3.2, the features before/on Conv-1 are
more abstract and global. Therefore we extract global context from the
bifurcation layer of the backbone network. This approach is also similar
to the methods employed by Wei et al. (2016) and Newell et al. (2016).

The architecture of the refinement module is shown in Fig. 2. It
concatenates the heatmaps of joint and limb detection with the feature
maps of the backbone network and takes them as the input. The input
then enters two refinement branches to refine joint and limb detec-
tions separately. Both branches use the same network configuration,
consisting of 7 modules which have the same layer structure as used in
the transfer sub-network. Each convolutional layer in the module has
128 channels with each followed by a ReLU layer except for the last
output layer. The 7 stacked modules increase the receptive field of the
network and enable the network to capture context information around
the predictions to refine them.

3.4. Group assignments

Here, we assemble a full body group of joints and limbs for each
person. The outputs of body joint and limb branches are the confidence
maps of the respective type. We perform a non-maximal suppression of
4-neighbourhoods over each score map and choose the pixels with the
largest score in every search as the corresponding candidate body part.

Given two pair-wise candidate joints, 𝐉+𝑖1 and 𝐉+𝑖2 , from a prede-
fined kinematic chain, their matching score is computed by the cosine
similarity between their line segment and the limb unit vector. More
specifically, the matching score is approximated by:

𝑠 =
𝐷
∑

𝑑=1
𝐋+
𝑗 (p(𝑑))

(𝐉+𝑖1 − 𝐉+𝑖2 )

‖𝐉+𝑖1 − 𝐉+𝑖2‖2
(6)

where 𝐷 is the total number of equidistant line segments between two
joints, and is set as 10 following existing works.

After computing the matching scores of all the candidate joint pairs,
we search for the definite connections of the human skeletons according
to the matching score. We follow the search approach of Cao et al.
(2017) due to its high efficiency. For a predefined skeleton connection,
the search starts from the connection with the highest score. The
obtained connection is considered a definite connection. Then, it finds
the next connection with the second highest score. If such a connection
has no duplicate joints with the previous definite connection, it will
be preserved. Otherwise, it will be removed. The system repeats the
search until no candidate connections can be found. This process allows
us to obtain the definite connections of all the predefined skeleton
connections. Finally, we assemble the definite connections that share
the same joint to form the complete human skeletons of multiple
people.

4. Experimental results

4.1. Datasets

We perform qualitative and quantitative experiments on the three
most popular multi-person pose estimation datasets: MPII Human Pose
(Andriluka et al., 2014), MS-COCO 2018 Keypoints Challenge dataset
(Lin et al., 2014) and PoseTrack 2017 and 2018 dataset (Andriluka
et al., 2018a).

The MPII Human pose contains 24,589 images, in which 17,408
images are split as the training set with 28,883 annotated people.
During the testing stage, the evaluation focuses on different regions in
an image, and one image may include one or more regions that consist
of a non-identical number of people. Pishchulin et al. (2016) defines a

Table 1
Evaluation metrics on the COCO dataset.

Metric Description

AP AP at OKSa = 0.50:0.05:0.95 (primary metric)
AP0.5 AP at OKS = 0.50
AP0.75 AP at OKS = 0.75
APM AP for medium objects: 322 < 𝑎𝑟𝑒𝑎 < 962

APL AP for large objects: 𝑎𝑟𝑒𝑎 > 962

aOKS–Object Keypoint Similarity, same role as IoU.

set of 1758 regions with rough position and scale information as the test
set and provides an evaluation tool to calculate mean Average Precision
(mAP) of the whole body joint prediction. The accuracy results are
evaluated and returned by the staff members of the MPII dataset.

MS-COCO 2018 keypoint detection dataset (Lin et al., 2014) consists
of training, validation and testing sets. On the COCO 2018 training
and validation sets, there are 118,287 and 5000 images respectively,
totally containing over 150,000 people with around 1.7 million labelled
keypoints. For open testing, the testing set has two splits: test-dev and
test-challenge. Each split contains roughly 20,000 images. We train
our models on the training set and perform ablation experiments on
the validation set. The model is evaluated on the test-dev set and the
accuracy results are obtained from the online evaluation server for
public comparisons.

PoseTrack 2018 dataset (Andriluka et al., 2018a) is split into 593,
74 and 375 videos for training, validation and testing, respectively.
The videos in the training set consist of 18,064 image frames. After
filtering out some bad cases according to our defined rules, the number
of effective annotated human instances in the training set is 85,967.
PoseTrack 2017 dataset is split into 300, 50 and 214 videos for training,
validation and testing, respectively. The annotation has defined 15
body keypoints. The dataset contains three challenges, single-frame,
multi-frame pose estimation and pose tracking. Here we focus on the
first challenge, i.e. single-frame multi-person pose estimation.

4.2. Evaluation protocols

Both MPII and PoseTrack multi-person pose estimation datasets use
the mean average precision (mAP) as the evaluation metric, similar
to Yang and Ramanan (2011). First, multiple people’s pose predic-
tions are generated and are assigned to the groundtruth according
to the highest PCKh matching score (Andriluka et al., 2014). Each
groundtruth can possess only one prediction. Unassigned predictions
are counted as false positives. Furthermore, the average precision (AP)
for each body part type is computed over all person instances and the
mAP is reported over all body part types.

On the COCO keypoint dataset, 5 metrics are used to describe the
performance of a model. They are AP (i.e. average precision), AP0.5,
AP0.75, APM, APL, as illustrated in Table 1. In order to assign predic-
tions to groundtruth, an object keypoint similarity (OKS) is defined to
compute the overlapping ratio between groundtruth and predictions in
terms of point distribution (Lin et al., 2014). Here the OKS plays the
same role as the intersection over union (IoU) in the case of object
detection. Thresholding the OKS adjusts the matching criterion. All
metrics computed allow a maximum of 20 top-scoring predictions per
image. Notice that in general applications, AP0.5 gives good accuracy
already. AP (averaged across all 10 OKS thresholds) is a stricter metric
in which 6 of the OKS matching thresholds exceed 0.70.

4.3. Implementation details

We train the network with an input size of 368 × 368 and an output
scale of 46 × 46. The ratio of the network input to output size is 8.0. We
utilise the SGD method to optimise the network weights. Optimisation
super-parameters are selected as: 4e-5 initial learning rate, 0.9 momen-
tum, 0.0005 weight decay, and a batch size of 28. During training,
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Table 2
Comparisons of different methods on the MPII test subset of 288 images. Bold: the best performance. Bold-Italic: comparable
or better performance than PAF.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP FPS

(Iqbal and Gall, 2016) 70.0 65.2 56.4 46.1 52.7 47.9 44.5 54.7 0.1
DeeperCut (Insafutdinov et al., 2016) 87.9 84.0 71.9 63.9 68.8 63.8 58.1 71.2 0.005
AE (Newell et al., 2017) 91.5 87.2 75.9 65.4 72.2 67.0 62.1 74.5 6.5
PAF (Cao et al., 2017) 92.9 91.3 82.3 72.6 76.0 70.9 66.8 79.0 20.4
AlphaPose (Fang et al., 2017) 89.3 88.1 80.7 75.5 73.7 76.7 70.0 79.1 3.4

Our method 92.7 89.3 80.0 71.3 73.8 70.0 67.6 77.8 42.2

Table 3
Comparisons of different approaches on the COCO 2018 test-dev set. Bold: the best
performance. Bold-Italic: comparable or better performance than PAF. Papandreou et al.
(2017) have not released source code.

Method FPS AP AP0.5 AP0.75 APM APL

(Papandreou et al., 2017) – 0.605 0.822 0.662 0.576 0.666
MaskRCNN (He et al., 2017) 4.4 0.627 0.870 0.684 0.574 0.711
AE (Newell et al., 2017) 6.5 0.655 0.868 0.723 0.606 0.726
PAF (Cao et al., 2017) 20.4 0.584 0.815 0.626 0.544 0.651

Our method 42.2 0.584 0.821 0.626 0.537 0.658

we use a person-centric sampling strategy. The augmentation of each
sample in a batch is focused on one person-instance. For example,
an image is first scaled so that the height of the selected person in
the image is around 220 pixels (a ratio of 0.6), then the image is
randomly augmented by rotating, scaling and flipping using the centre
of the selected person as the centre of transformation. Lastly, a patch
of 368 × 368 is centred on the selected instance and cropped from the
image. The regions out of the image are padded with a value of 128.
In order to learn a detection confidence within the range of [0, 1] and
smooth the training gradients, the pixel values of the cropped patch
are normalised by 256 and are subtracted by 0.5. The implementation
is built on the open-sourced Caffe framework (Jia et al., 2014). During
testing, for the single scale evaluation, an input image is scaled to the
height of 368 with the length-to-width ratio is maintained. For the
multi-scale evaluation, an input image is scaled to four sizes with a
gap of 0.25 and the heatmaps of joints and limbs are averaged across
sizes.

4.4. Comparison with state-of-the-art methods on accuracy

For the MPII test subset, our approach outperforms other meth-
ods in computational time and achieves comparable performance in
accuracy (within 1.2%) with PAF (Cao et al., 2017), as illustrated in
Table 2. In this case, we use the network’s depth of 26 compared to
PAF’s network depth of 50, resulted in a significantly increased frame
speed. Specifically, the precision of head detection achieves a very
high value of 92.7%, this being the case due to appearance variation
and occlusion not affecting the human head as prominently. For the
remaining body parts, the accuracy of the upper-body is higher than
that of the lower body due to an increased chance of occlusion in the
lower body areas of the dataset. In addition, the upper body and lower
body show a great class-imbalance in the dataset. We find that the
number of visible human ankle joints is lower than that of the upper
body joints (e.g. shoulder, wrist and elbow) by about 25%. Therefore
the lower precision values for ankle joints is not unexpected. Note that
the accuracy of ankle identification found in our method is higher than
PAF.

For the COCO test-dev set, we achieved the same performance with
PAF (Cao et al., 2017) while attaining a 2 times faster speed of 42.2
FPS, as illustrated in Table 3. From our observation, the large human
instances have higher precision and recall than medium-sized human
instances. For the AP0.5 metric our method achieves a very high value
of 0.821. In Table 6, we show that our model outperforms PAF by 1.4%
in the single-scale evaluation and has the same performance to PAF in
the multi-scale evaluation.

For the PoseTrack dataset, the comparison results are presented in
Table 4. Our method outperforms Detect&Track (Girdhar et al., 2018)
and AlphaPose (Xiu et al., 2018) on the PoseTrack 2017 validation
and testing sets. On the 2017 validation set, for the parts of shoulder

Table 4
Comparisons of different methods on the PoseTrack 2017 and 2018 dataset. Bold: the best performance. The results of Xiao
et al. (2018) is trained and tested by us since the original implementation has not performed training on the PoseTrack 2018
dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP FPS

PoseTrack 2017 Validation

Detect&Track (Girdhar et al., 2018) 67.5 70.2 62 51.7 60.7 58.7 49.8 60.6 4.4
AlphaPose-PoseFlow (Xiu et al., 2018) 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5 3.4
JointFlow (Doering et al., 2018) – – – – – – – 69.3 0.2
Xiao et al. (2018), ResNet50 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4 9.1
STAF-SS (Raaj et al., 2019) – – – 55.0 – – 53.5 64.6 27

Our method 65.0 81.6 72.8 60.8 69.2 63.3 54.7 66.6 42.2

PoseTrack 2017 Testing

BUTD (Jin et al., 2017) 74.7 71.9 65.6 56.4 62.2 57.5 51.0 63.6 –
Detect&Track (Girdhar et al., 2018) – – – – – – – 59.6 4.4
AlphaPose-PoseFlow (Xiu et al., 2018) 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0 3.4
JointFlow (Doering et al., 2018) – – – 53.1 – – 50.4 63.3 0.2
Xiao et al. (2018), ResNet50 76.4 77.2 72.2 65.1 68.5 66.9 60.3 70.0 9.1
STAF-MS (Raaj et al., 2019) – – – 62.8 – – 59.5 69.4 7

Our method 65.5 75.9 68.1 58.9 63.1 59.0 52.1 63.4 42.2

PoseTrack 2018 Validation

Xiao et al. (2018), ResNet50 74.4 76.9 72.2 65.2 69.2 70.0 62.9 70.4 9.1
STAF-SS (Raaj et al., 2019) – – – 56.2 – – 54.2 63.7 27

Our method 66.2 81.9 74.3 62.8 70.1 66.2 57.5 68.3 42.2
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Table 5
Comparisons of properties of different models. FPS is tested on a single NVIDIA Tesla P40. MaskRCNN (He
et al., 2017) correspond to the configuration of ResNet-50 with feature pyramid network. Our method is
10 times faster than MaskRCNN (He et al., 2017), and 2 times quicker than PAF (Cao et al., 2017).

Type Method Model size (MB) # Parameter FLOPs AP FPS

Top-down MaskRCNN (He et al., 2017) 480.8 62.4 × 106 536.6 × 109 0.627 4.4
Bottom-up PAF (Cao et al., 2017) 209.3 52.3 × 106 159.6 × 109 0.584 20.4
Bottom-up Our method 85.2 21.2 × 106 82.5 × 109 0.584 42.2

Table 6
Comparisons of multi-scale evaluation on the COCO 2018 test-dev set.

Method AP AP0.5 AP0.75 APM APL

PAF (Cao et al., 2017), single-scale 0.469 0.737 0.493 0.403 0.561
PAF (Cao et al., 2017), multi-scale 0.584 0.815 0.626 0.544 0.651
Our method, single-scale 0.483 0.751 0.503 0.462 0.515
Our method, multi-scale 0.584 0.821 0.626 0.537 0.658

Table 7
The comparisons of transfer from different layers on the COCO 2018 validation set.

Method AP AP0.5 AP0.75 APM APL

Transfer from Conv-1 0.452 0.740 0.456 0.387 0.549
Transfer from Conv-2 0.463 0.741 0.475 0.401 0.557
Transfer from Conv-3 0.475 0.741 0.493 0.415 0.565
Transfer from Conv-5 0.459 0.742 0.454 0.433 0.501

Transfer from Conv-4 0.484 0.741 0.512 0.429 0.573

and hip, the accuracy of our method is higher than or comparable
to Xiao et al. (2018). On the 2017 testing set, our method is ranked
2nd for most of the body parts. On the 2018 validation, our method
outperforms (Xiao et al., 2018) in the detection accuracy of several
body parts, such as shoulder, elbow and hip, by 5%, 2.1% and 1%,
respectively. In addition, the speed of our method is much faster than
the other algorithms we compared in this experiment.

4.5. Comparison with state-of-the-art methods on computational complexity

Our networks consist of a backbone, a feature transfer module and
a refinement module. The parameter number of the whole network is
21,278,912. In contrast, the total amount of parameters in the PAF (Cao
et al., 2017) is 52,298,816, which is two times more than our network.
The parameter number of each module of our network is shown in
Fig. 5. For the run time of our approach, we record the inference time
on a desktop with one NVIDIA Tesla P40 GPU over 1000 images, which
include different numbers of people from 1 to 20. The whole network
with 368 × 432 sized inputs only costs 22.71 ms on average (i.e. 44.0
FPS). Group assignment takes 0.2 ms for 2 people and 0.6 ms for 10
people. This shows that our network has higher inference efficiency
due to the contribution of feature transfer.

We also use the same environment for speed comparisons with the
state-of-the-art, except (Papandreou et al., 2017) who have not released
the source code, as illustrated in Tables 2 and 3. In Table 5, we compare
our method with two typical top-down and bottom-up methods in terms
of computational complexity. We observe that our method is 9.6 times
faster than the top-down one, and 2.1 times faster than the bottom-
up method. In addition, our model has smaller model size, number
of parameters and FLOPs than other models, which accelerates the
training speed and reduces the requirements of the processor’s memory,
frequency, etc.

4.6. Detailed analysis

In this section, we carry out ablation experiments to validate the
design of the network architecture. These include determining the
position of extracted features for transfer, testing with/without the
feature transfer sub-networks to determine their effect on performance,
testing with/without the refinement module to determine its effect

Table 8
The comparisons of with and without transfer sub-networks on the COCO 2018
validation set.

Method AP AP0.5 AP0.75 APM APL

Ours no transfer 0.444 0.737 0.440 0.391 0.530
Ours 0.484 0.741 0.512 0.429 0.573

Fig. 5. The number of parameters for each module of our network.

on performance, and evaluating the effect of multi-scale evaluation.
Finally, we show the results of error analysis to suggest future modifica-
tion directions. Since the COCO dataset provides standard validation set
and performance analysis tools, we undertake all ablation experiments
on the COCO 2018 validation set using single scale input.

4.6.1. The effect of features extraction layer placement
We compare the effect of extracting features from different layers to

the accuracy by quantitative evaluations. Table 7 presents the results
of extracting features from Conv-1 to Conv-5. We can see that the
accuracy (AP metric) is increased progressively by extracting features
from higher layers until Conv-5. Extracting features from the Conv-5
layer has the effect of lowering accuracy, suggesting that this layer is
not as suitable as an output layer for feature transfer.

4.6.2. The effect of feature transfer sub-network
Here, we determine the effect that the feature transfer sub-networks

have on performance. We do this by removing the relevant feature
transfer layers (i.e. the blue blocks in Fig. 2) while keeping all other
structures and parameters the same for the equality of experiments. The
results of the experiments are presented in Table 8. We find that the
feature transfer sub-network accounts for up to 4.0% of improvement
in estimation accuracy (AP metric). This result indicates that feature
transfer has a significant effect on network performance.

4.6.3. The effect of refinement module
We determine the effect that the refinement module has on network

performance. We do this by removing the entire refinement module
(i.e. the blocks surrounded by the dotted blue line in Fig. 2) and set
the nodes of 1 and 2 (Fig. 2) as the outputs of joint and limb branches.
In Table 9, we can see that the refinement module contributes a 1.7%
improvement in estimation accuracy (AP metric). This value reveals
that refining the score maps with context information is an effective
strategy for improving accuracy.

4.6.4. The effect of multi-scale evaluation
In order to analyse the effect of multi-scale evaluation, we report

the results of single-scale and multi-scale evaluation on the PAF (Cao
et al., 2017) and our method on the COCO test-dev set in Table 6. We
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Fig. 6. Error distribution and sensitivity analysis. The plot on the left shows the effect of progressively rectifying errors of each type on the accuracy of our method at the OKS
evaluation threshold of 0.5. The legend indicates the corresponding AP values. The plot on the right shows the results using the same sensitivity analysis method at the OKS
threshold of 0.75.

Table 9
The comparisons of with and without refinement module on the COCO 2018 validation
set.

Method AP AP0.5 AP0.75 APM APL

Ours no refine 0.467 0.751 0.453 0.400 0.576
Ours 0.484 0.741 0.512 0.429 0.573

observe that our single-scale model outperforms the single-scale PAF
model by about 1.4% in accuracy. We also notice that both single-
scale models using the AP0.5 metric already achieve a high accuracy
of around 0.75. Multi-scale evaluation mainly compensates for the
precision at extremely strict OKS matching thresholds from AP0.75 to
AP95.

4.6.5. Performance analysis on COCO 2018 validation set
We use the evaluation tools of Ronchi and Perona (2017) to analyse

the error constitutions of our model. Ronchi and Perona (2017) define 3
error types including background error, scoring error, and localisation
error. Background error includes false positives (FP) and false negatives
(FN). Scoring error occurs when one prediction with a high confidence
score has a low OKS value. Localisation error contains four specific types
of error — jitter, inversion, swap and miss. Jitter is when the predictions
have a small error around the correct keypoint location. Inversion is
defined as the errors of inversions between the left and right parts of
the body. Swap denotes the predictions with the same part type on
incorrect instances. This metric is useful for overlapping people. Miss is
used when the predictions have large localisation errors which exceed
the defined keypoint similarity thresholds.

The impact of all types of error above on the accuracy of our
approach is summarised in Fig. 6 where the OKS threshold is at 0.5 and
0.75. Each plot consists of a set of Precision–Recall (PR) curves where
each curve is strictly larger than the previous as the method’s errors are
progressively rectified. For the OKS threshold of 0.5 (Fig. 6(a)), we can
see that the overall AP is 0.741. Rectifying all the miss errors obtains
a large improvement of the AP to 0.843. Correcting swap, inversion,
and jitter have almost no change to the AP (0.853). When localisation
is correct, revising the confidence score can contribute a small AP im-
provement of about 1.8% (0.871). With the optimal confidence score,
correcting background false positives has a trivial effect on the AP as
predictions barely remain unmatched. Finally, eliminating background
false negatives results in perfect performance. In contrast, using a more
strict OKS threshold of 0.75 enlarges the impact of localisation error
but has no effect on scoring error and background error, as shown
in Fig. 6(b). From here we know that the errors of our method are
dominated mostly by localisation error and background false negatives.

Table 10
The comparisons of network’s inference speed before and after using TensorRTTM library.

Optimisation Before After

Inference time (ms) 22.71 12.45

Finally, we give some qualitative results in Fig. 7, which includes
the cases of scale, appearance and viewpoint variation, occlusion and
crowding.

5. Deployment acceleration

The existing deep learning frameworks provide several basic layers
or operators (OP) to support specific computations due to the consid-
eration of flexibility during model designing and training. However, if
the network structure and weights are fixed, some layers or operators
could be merged as one operation and model forward inference can
be further accelerated. For example, one convolutional layer followed
by one bias layer have to deploy memory operation twice. Actually,
these two layers could be merged into one layer according to the
mathematical derivation. In addition, some layers could be ignored in
the implementation, such as concatenation operation as multiple cor-
responding tensors can be utilised directly by the next layer. Currently,
there are some open source libraries providing network optimisation
and acceleration. Here, we prototype the acceleration solution using
TensorRTTM (NVIDIA, 2019), which is the state-of-the-art library that
facilitates optimisation on NVIDIA GPUs. The optimised inference im-
plementation does not affect the prediction accuracy since the network
weights and parameter precision are not changed. The acceleration
results are shown in Table 10. The inference time of the network is
decreased from 22.71 ms to 12.45 ms on one NVIDIA Tesla P40 GPU.
The last pose estimation speed achieves 73.8 FPS.

6. Conclusion

In this work, we have proposed a deep feature transfer network that
captures concurrently activated joint and limb features to form a com-
plementary inference architecture for multi-person pose estimation.
Experiments are performed on the three most popular multi-person
pose estimation benchmarks. Results show that the proposed structure
effectively improves the accuracy. In addition, our method achieved
comparable state-of-the-art accuracy with speeds exceeding 42.2 FPS,
which is between 2 and 10 times faster than existing works. We further
accelerate the inference speed to 73.8 FPS by using the deep learning
optimisation library of TensorRT.
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Fig. 7. Qualitative results of our method on the MPII dataset. Each colour corresponds to a human instance.

As a future direction, we would like to further improve the method
by combining other strategies from existing literature, such as the
feature pyramid by Yang et al. (2017) and the attention mechanism
by Chu et al. (2016), to reduce localisation and background false
negative errors. Various network architectures for structural relation
inference tasks in existing works (Chen et al., 2018) could also provide
guidance to improve body part detection. In addition, using light-
weight and low-bit network to obtain high speed while maintaining
the accuracy is a promising future research direction.
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