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Abstract
Whilst the availability of 3D LiDAR point cloud data has
significantly grown in recent years, annotation remains ex-
pensive and time-consuming, leading to a demand for semi-
supervised semantic segmentation methods with application
domains such as autonomous driving. Existing work very
often employs relatively large segmentation backbone net-
works to improve segmentation accuracy, at the expense of
computational costs. In addition, many use uniform sam-
pling to reduce ground truth data requirements for learning
needed, often resulting in sub-optimal performance. To ad-
dress these issues, we propose a new pipeline that employs a
smaller architecture, requiring fewer ground-truth annota-
tions to achieve superior segmentation accuracy compared
to contemporary approaches. This is facilitated via a novel
Sparse Depthwise Separable Convolution module that signif-
icantly reduces the network parameter count while retaining
overall task performance. To effectively sub-sample our
training data, we propose a new Spatio-Temporal Redun-
dant Frame Downsampling (ST-RFD) method that leverages
knowledge of sensor motion within the environment to ex-
tract a more diverse subset of training data frame samples.
To leverage the use of limited annotated data samples, we
further propose a soft pseudo-label method informed by Li-
DAR reflectivity. Our method outperforms contemporary
semi-supervised work in terms of mIoU, using less labeled
data, on the SemanticKITTI (59.5@5%) and ScribbleKITTI
(58.1@5%) benchmark datasets, based on a 2.3× reduction
in model parameters and 641× fewer multiply-add oper-
ations whilst also demonstrating significant performance
improvement on limited training data (i.e., Less is More).

1. Introduction
3D semantic segmentation of LiDAR point clouds has played
a key role in scene understanding, facilitating applications
such as autonomous driving [6, 23, 26, 28, 46, 60, 63] and
robotics [3, 38, 51, 52]. However, many contemporary meth-
ods require relatively large backbone architectures with mil-
lions of trainable parameters requiring many hundred giga-
bytes of annotated data for training at a significant compu-
tational cost. Considering the time-consuming and costly
nature of 3D LiDAR annotation, such methods have become
less feasible for practical deployment.
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Figure 1. mIoU performance (%) against parameters and multiply-
add operations on SemanticKITTI (fully annotated) and Scrib-
bleKITTI (weakly annotated) under the 5% sampling protocol.

Existing supervised 3D semantic segmentation meth-
ods [13, 31, 38, 44, 51, 52, 56, 58, 63] primarily focus on
designing network architectures for densely annotated data.
To reduce the need for large-scale data annotation, and in-
spired by similar work in 2D [11, 47, 49], recent 3D work
proposes efficient ways to learn from weak supervision [46].
However, such methods still suffer from high training costs
and inferior on-task performance. To reduce computational
costs, a 2D projection-based point cloud representation is
often considered [3, 14, 31, 38, 51, 52, 56, 61], but again at
the expense of significantly reduced on-task performance.
As such, we observe a gap in the research literature for the
design of semi or weakly supervised methodologies that
employ a smaller-scale architectural backbone, hence facili-
tating improved training efficiency whilst also reducing their
associated data annotation requirements.

In this paper, we propose a semi-supervised methodology
for 3D LiDAR point cloud semantic segmentation. Facili-
tated by three novel design aspects, our Less is More (LiM)
based methodologies require less training data and less train-
ing computation whilst offering (more) improved accuracy
over contemporary state-of-the-art approaches (see Fig. 1).

Firstly, from an architectural perspective, we propose a
novel Sparse Depthwise Separable Convolution (SDSC)
module, which substitutes traditional sparse 3D convolu-
tion into existing 3D semantic segmentation architectures,
resulting in a significant reduction in trainable parameters
and numerical computation whilst maintaining on-task per-
formance (see Fig. 1). Depthwise Separable Convolution
has shown to be very effective within image classification



tasks [12]. Here, we tailor a sparse variant of 3D Depthwise
Separable Convolution for 3D sparse data by first applying
a single submanifold sparse convolutional filter [20, 21] to
each input channel with a subsequent pointwise convolution
to create a linear combination of the sparse depthwise convo-
lution outputs. This work is the first to attempt to introduce
depthwise convolution into the 3D point cloud segmentation
field as a conduit to reduce model size. Our SDSC module
facilitates a 50% reduction in trainable network parameters
without any loss in segmentation performance.

Secondly, from a training data perspective, we propose
a novel Spatio-Temporal Redundant Frame Downsam-
pling (ST-RFD) strategy that more effectively sub-samples
a set of diverse frames from a continuously captured LiDAR
sequence in order to maximize diversity within a minimal
training set size. We observe that continuously captured
LiDAR sequences often contain significant temporal redun-
dancy, similar to that found in video [2], whereby temporally
adjacent frames provide poor data variation. On this basis,
we propose to compute the temporal correlation between ad-
jacent frame pairs, and use this to select the most informative
sub-set of LiDAR frames from a given sequence. Unlike pas-
sive sampling (e.g., uniform or random sampling), our active
sampling approach samples frames from each sequence such
that redundancy is minimized and hence training set diver-
sity is maximal. When compared to commonplace passive
random sampling approaches [29,32,46], ST-RFD explicitly
focuses on extracting a diverse set of training frames that
will hence maximize model generalization.

Finally, in order to employ semi-supervised learning, we
propose a soft pseudo-label method informed by the LiDAR
reflectivity response, thus maximizing the use of any an-
notated data samples. Whilst directly using unreliable soft
pseudo-labels generally results in performance deteriora-
tion [5], the voxels corresponding to the unreliable predic-
tions can instead be effectively leveraged as negative samples
of unlikely categories. Therefore, we use cross-entropy to
separate all voxels into two groups, i.e., a reliable and an un-
reliable group with low and high-entropy voxels respectively.
We utilize predictions from the reliable group to derive pos-
itive pseudo-labels, while the remaining voxels from the
unreliable group are pushed into a FIFO category-wise mem-
ory bank of negative samples [4]. To further assist semantic
segmentation of varying materials in the situation where we
have weak/unreliable/no labels, we append the reflectivity
response features onto the point cloud features, which again
improve segmentation results.

We evaluate our method on the SemanticKITTI [7] and
ScribbleKITTI [46] validation set. Our method outperforms
contemporary state-of-the-art semi- [29,32] and weakly- [46]
supervised methods and offers more in terms of performance
on limited training data, whilst using less trainable parame-
ters and less numerical operations (Less is More).

Overall, our contributions can be summarized as follows:
• A novel methodology for semi-supervised 3D LiDAR

semantic segmentation that uses significantly less pa-
rameters and offers (more) superior accuracy.1

• A novel Sparse Depthwise Separable Convolution
(SDSC) module, to reduce trainable network param-
eters, and to both reduce the likelihood of over-fitting
and facilitate a deeper network architecture.

• A novel Spatio-Temporal Redundant Frame Downsam-
pling (ST-RFD) strategy, to extract a maximally diverse
data subset for training by removing temporal redun-
dancy and hence future annotation requirements.

• A novel soft pseudo-labeling method informed by Li-
DAR reflectivity as a proxy to in-scene object material
properties, facilitating effective use of limited data an-
notation.

2. Related Work
Semi-supervised learning (SSL) LiDAR semantic seg-
mentation is a special instance of weak supervision that
combines a small amount of labeled, with a large amount of
unlabeled point cloud during training. Numerous approaches
have been explored for LiDAR semantic segmentation.
Projection-based approaches [31, 32, 36, 38, 51, 52, 56] make
full use of 2D-convolution kernels by using range or other 2D
image-based spherical coordinate representations of point
clouds. Conversely, voxel-based approaches [32, 44, 46, 63]
transform irregular point clouds to regular 3D grids and
then apply 3D convolutional neural networks with a bet-
ter balance of the efficiency and effectiveness. Pseudo-
labeling is generally applied to alleviate the side effect of
intra-class negative pairs in feature learning from the teacher
network [29, 32, 46, 57]. However, such methods only uti-
lize samples with reliable predictions and thus ignore the
valuable information that unreliable predictions carry. In our
work, we combined a novel SSL framework with the mean
teacher paradigm [45], demonstrating the utilization of unre-
liable pseudo-labels to improve segmentation performance.
Depthwise separable convolution [41] is a depthwise con-
volution followed by a pointwise convolution, to reduce both
model size and complexity. Being a more computationally ef-
ficient alternative than standard convolution, it is used for mo-
bile applications [24, 25, 40] and hardware accelerators [37].
Furthermore, it is a building block of Xception [12], a deep
convolutional neural network architecture that achieves state-
of-the-art performance on the ImageNet [15] classification
task, via more efficient use of model parameterization. In
this work, we propose a novel sparse variant of depthwise
separable convolution, which has both the efficiency advan-
tages of depthwise separable convolution and those of sparse
convolution for processing spatially-sparse data [20].

1Full source code: https://github.com/l1997i/lim3d/.

https://github.com/l1997i/lim3d/
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Figure 2. Our proposed architecture for unreliable pseudo-labels LiDAR semantic segmentation involves three stages: training, pseudo-
labeling, and distillation with unreliable learning. We apply ST-RFD sampling before training the Mean Teacher on available annotations.

Temporal redundancy is highly prevalent within video
[48, 62] and radar [35] sequences alike. Existing semi-
supervised 3D LiDAR segmentation methods [32,46] utilize
a passive uniform sampling strategy to filter unlabeled points
from a fully-labeled point cloud dataset. Active learning
frameworks handle the redundancy to reduce annotation or
training efforts by selecting informative and diverse sub-
scenes for label acquisition [16, 27, 53]. We propose a novel
temporal-redundancy-based sampling strategy with compara-
ble time cost to uniform sampling, to reduce the inter-frame
spatio-temporal redundancy and maximize data diversity.

3. Methodology
We first present an overview of the mean teacher framework
we employ (Sec. 3.1) and then explain our use of unreli-
able pseudo-labels informed by LiDAR reflectivity for semi-
supervised learning (Sec. 3.2). Subsequently, we detail our
ST-RFD strategy for dataset diversity (Sec. 3.4) and finally
our parameter-reducing SDSC module (Sec. 3.5).

Formally, given a LiDAR point cloud P = {p | p =
(x, y, z, I, R) ∈ R5} where (x, y, z) is a 3D coordinate, I is
intensity and R is reflectivity, our goal is to train a semantic
segmentation model by leveraging both a large amount of
unlabeled U = {pu

i }
Nu
i=1 ⊊ P and a smaller set of labeled

data V = {(pv
i , yvi )}

Nv
i=1 ⊊ P .

Our overall architecture involves three stages (Fig. 2):
(1) Training: we utilize reflectivity-prior descriptors and
adapt the Mean Teacher framework to generate high-quality
pseudo-labels; (2) Pseudo-labeling: we fix the trained
teacher model prediction in a class-range-balanced [46] man-
ner, expanding dataset with Reflectivity-based Test Time
Augmentation (Reflec-TTA) during test time; (3) Distilla-
tion with unreliable predictions: we train on the gener-
ated pseudo-labels, and utilize unreliable pseudo-labels in a
category-wise memory bank for improved discrimination.

3.1. Mean Teacher Framework

We introduce weak supervision using the Mean Teacher
framework [45], which avoids the prominent slow training
issues associated with Temporal Ensembling [33]. This

framework consists of two models of the same architecture
known as the student and teacher respectively, for which
we utilize a Cylinder3D [63]-based segmentation head f .
The weights of the student model θ are updated via standard
backpropagation, while the weights of the teacher model
θ∗ are updated by the student model through Exponential
Moving Averaging (EMA):

θ∗t+1 = κθ∗t + (1− κ)θt+1, t ∈ {0, 1, · · ·T − 1}, (1)

where κ denotes a smoothing coefficient to determine update
speed, and T is the maximum time step.

During training, we train a set of weakly-labeled point
cloud frames with voxel-wise inputs generated via asymmet-
rical 3D convolution networks [63]. For every point cloud,
our optimization target is to minimize the overall loss:

L = LS + λULU + gλCLC , (2)

where LS and LU denote the losses applied to the supervised
and unsupervised set of points respectively, LC denotes the
contrastive loss to make full use of unreliable pseudo-labels,
λU is the weight coefficient of LU to balance the losses, and
g is the gated coefficient of LC . g equals λC if and only
if it is in the distillation stage. We use the consistency loss
(implemented as a Kullback-Leibler divergence loss [23]),
lovasz softmax loss [8], and the voxel-level InfoNCE [47] as
LU , LS and LC respectively.

We first generate our pseudo-labels for the unlabeled
points via the teacher model. Subsequently, we generate
reliable pseudo-labels in a class-range-balanced (CRB) [46]
manner, and utilize the qualified unreliable pseudo-labels
as negative samples in the distillation stage. Finally, we
train the model with both reliable and qualified unreliable
pseudo-labels to maximize the quality of the pseudo-labels.

3.2. Learning from Unreliable Pseudo-Labels

Unreliable pseudo-labels are frequently eliminated from
semi-supervised learning tasks or have their weights de-
creased to minimize performance loss [29, 39, 46, 55, 59, 65].
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Figure 3. Illustration on unreliable pseudo-labels. Left: entropy
predicted from an unlabeled point cloud, with lower entropy corre-
sponding to greener color. Right: Category-wise probability of an
unreliable prediction X , only top-4 and last-4 probabilities shown.

In line with this idea, we utilize CRB method [46] to first
mask off unreliable pseudo-labels and then subsequently
generate high-quality reliable pseudo-labels.

However, such a simplistic discarding of unreliable
pseudo-labels may lead to valuable information loss as it
is clear that unreliable pseudo-labels (i.e., the corresponding
voxels with high entropy) can offer information that helps
in discrimination. Voxels that correlate to unreliable predic-
tions can alternatively be thought as negative samples for
improbable categories [49], although performance would suf-
fer if such unreliable predictions are used as pseudo-labels
directly [5]. As shown in Fig. 3, the unreliable pseudo predic-
tions show a similar level of confidence on car and truck
classes, whilst being sure the voxel cannot be pole or road.
Thus, together with the use of CRB for high-quality reliable
pseudo-labels, we also ideally want to make full use of these
remaining unreliable pseudo-labels rather than simply dis-
carding them. Following [49], we propose a method to lever-
age such unreliable pseudo-labels for 3D voxels as negative
samples. However, to maintain a stable amount of negative
samples, we utilize a category-wise memory bank Qc (FIFO
queue, [54]) to store all the negative samples for a given class
c. As negative candidates in some specific categories are
severely limited in a mini-batch due to the long-tailed class
distribution of many tasks (e.g. autonomous driving), with-
out such an approach in place we may instead see the gradual
dominance of large and simple-to-learn classes within our
generated pseudo-labels.

Following [22, 47], our method has three prerequisites,
i.e., anchor voxels, positive candidates, and negative can-
didates. They are obtained by sampling from a particular
subset, constructed via Eq. (3) and Eq. (4), in order to reduce
overall computation. In particular, the set of features of all
candidate anchor voxels for class c is denoted as:

Ac =
{
Ea,b | y∗a,b = c, pa,b(c) > δp

}
, (3)

where Ea,b is the feature embedding for the a-th point cloud
frame at voxel b, δp is the positive threshold of all classes,
pa,b(c) is the softmax probability by the segmentation head
at c-th dimension. y∗a,b is set to the ground truth label y∗a,b
if the ground truth is available, otherwise, y∗a,b is set to the
pseudo label ŷa,b, due to the absence of ground truth.

The positive sample is the common embedding center of
all possible anchors, which is the same for all anchors from
the same category, shown in Eq. (4).

E+
c =

1

|Ac|
∑

Ec∈Ac

Ec. (4)

Following [49], we similarly construct multiple negative
samples E−

c for each anchor voxel.
Finally, for each anchor voxel containing one positive

sample and N − 1 negative samples, we propose the voxel-
level InfoNCE loss [47] (a variant of contrastive loss) LC

in Eq. (5) to encourage maximal similarity between the an-
chor voxel and the positive sample, and the minimal similar-
ity between the anchor voxel and multiple negative samples.

LC = −
1

C

C−1∑
c=0

E
Ec

log f
(

ec, e+c , τ
)

∑
e−c,j∈E−

c
f
(

ec, e−c,j , τ
)


= −
1

C

C−1∑
c=0

E
Ec

log exp
(〈

ec, e+c
〉
/τ

)
exp

(〈
ec, e+c

〉
/τ

)
+

N−1∑
j=1

exp
(〈

ec, e−c,j
〉
/τ

)


(5)

where ⟨·, ·⟩ denotes cosine similarity. ec, e+c and e−c,j denote
the embedding, positive sample of the current anchor voxel,
and embedding of the j-th negative sample of class c.

3.3. Reflectivity-Based Test Time Augmentation

To obtain minimal accuracy degradation despite very few
weak labels, e.g., 1% weakly-labeled ScribbleKITTI [46]
dataset, we propose a Test Time Augmentation (TTA) that
does not depend on any label, but only relies on a feature of
original LiDAR points themselves. Also included in almost
every LiDAR benchmark dataset for autonomous driving [7,
10, 18, 30, 34, 46], is the intensity of light reflected from
the surface of an object at each point. In the presence of
limited data labels in the semi-supervised learning case, this
property of the material surface, normalized by distance to
obtain the surface reflectivity in Eq. (6), could readily act as
auxiliary information to identify different semantic classes.

Our intuition is that reflectivity R, as a point-wise
distance-normalized intensity feature, offers consistency
across lighting conditions and range as:

R = Ir2 =
S

4πr2
· r2 ∝ S, (6)

where S is the return strength of the LiDAR laser pulse, I
is the intensity and r is the point distance from the source
on the basis that scene objects with similar surface material,
coating, and color characteristics will share similar S returns.

On this basis, we define our novel reflectivity-based Test
Time Augmentation (Reflec-TTA) technique, as a substi-
tute for label-dependent Pyramid Local Semantic-context
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Figure 4. Coarse histograms of Reflec-TTA bins (not to scale).

(PLS) augmentation [46] during test-time as ground truth is
not available. We append our point-wise reflectivity to the
existing point features in order to enhance performance in
presence of false or non-existent pseudo-labels at the distilla-
tion stage. As shown in Fig. 4, and following [46], we apply
various sizes s of bins in cylindrical coordinates to analyze
the intrinsic point distribution of the LiDAR sensor at vary-
ing resolutions (shown in red, green and blue in Fig. 4). For
each bin bi, we compute a coarse histogram, hi:

hi =
{
h
(k)
i | k ∈ [1, Nb]

}
∈ RNb , i ∈ [1, s] ,

h
(k)
i = # {Rj ∈ rk, ∀j | pj ∈ bi} ,
rk = [ (k − 1)/Nb, k/Nb ), k ∈ [ 1, Nb ] .

(7)

The Reflec-TTA features R⊛ of all points pj ∈ bj is further
computed as the concatenation of the coarse histogram hi of
the normalized histogram:

R⊛ = {hi/max (hi) | i ∈ [1, s]} ∈ RsNb (8)

In the distillation stage, we append R⊛ to the input features
and redefine the input LiDAR point cloud as the augmented
set of points P⊛ =

{
p | (x, y, z, I, R⊛) ∈ RsNb+4

}
.

3.4. Spatio-Temporal Redundant Frame Downsampling

Due to the spatio-temporal correlation of LiDAR point cloud
sequences often captured from vehicles in metropolitan lo-
cales, many large-scale point cloud datasets demonstrate
significant redundancy. Common datasets employ a frame
rate of 10Hz [7,9,10,18,30,34,42], and a number of concur-
rent laser channels (beams) of 32 [10], 64 [7, 9, 18, 30, 42] or
128 [34]. Faced with such large-scale, massively redundant
training datasets, the popular practice of semi-supervised
semantic segmentation approaches [11, 17, 32, 45, 64] is to
uniformly sample 1%, 10%, 20%, or 50% of the available
annotated training frames, without considering any redun-
dancy attributable to temporary periods of stationary capture
(e.g. due to traffic, Fig. 5) or multi-pass repetition (e.g. due
to loop closure).

To extract a diverse set of frames, we propose a novel
algorithm called Spatio-Temporal Redundant Frame Down-
sampling (ST-RFD, Algorithm 1) that determines spatio-
temporal redundancy by analyzing the spatial-overlap within
time-continuous LiDAR frame sequences. The key idea
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Figure 5. Illustration of LiDAR frame temporal correlation as
[# frame ID] redundancy with 5% sampling on SemanticKITTI [7]
( sequence 00) using uniform sampling (selected frames inu) and
ST-RFD strategy (u).

is that if spatial-overlap among some continuous frame se-
quence is high due to spatio-temporal redundancy, multiple
representative frames can be sub-sampled for training, sig-
nificantly reducing both training dataset size and redundant
training computation.

Fig. 6 shows an overview of ST-RFD. It is conducted
inside each temporal continuous LiDAR sequence e. First,
we evenly divide p point cloud frames in each sequence
into ⌈p/q⌉ subsets (containing q frames). For each frame
at time t inside the subset, we find its corresponding RGB
camera image in the dataset at time t and t+1. To detect the
spatio-temporal redundancy at time t, the similarity ψ(t, t+
1) between temporally adjacent frames are then computed
via the Structural Similarity Index Measure (SSIM, [50]).
We utilize the mean value of similarity scores between all
adjacent frames in the current subset as a proxy to estimate
the spatio-temporal redundancy present. A sampling rate is
then determined according to this mean similarity for frame
selection within this subset. This is repeated for all subsets
in every sequence to construct our final set of sub-sampled
LiDAR frames for training.

Concretely, as shown in Algorithm 1, we implement a ST-
RFD supervisor that determines the most informative assign-
ments (i.e., the key point cloud frames) that the teacher and
student networks should train on respectively. The ST-RFD
supervisor has an empirical supervisor function υ, which
decides the amount of assignments, i.e., the sampling rate
corresponding to the extent of spatio-temporal redundancy.
Using SSIM [50] as the redundancy function ψ to measure
the similarity between the RGB images associated with two
adjacent point clouds, we define the empirical supervisor
function υ with decay property υ(x) = exp(−βx), where
β ∈ (0,+∞) is the decay coefficient, and x is the redun-
dancy calculated from ψ. In this way, the higher the degree
of spatio-temporal redundancy (as ψ → 1), the lower the
sampling rate our ST-RFD supervisor will allocate, hence re-
ducing the training set requirements for teacher and student
alike.

3.5. Sparse Depthwise Separable Convolution

Existing LiDAR point cloud semantic segmentation methods
generally rely on a large-scale backbone architecture with
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Figure 6. Overview of our proposed Spatio-Temporal Redundant Frame Downsampling approach.

Algorithm 1: Spatio-Temporal Redundant Frame
Downsampling.

Input: Point cloud frames pool P (size of p), subset size q,
redundancy function ψ ∈ [0, 1] and empirical supervisor
function υ.

1 Divide P evenly into ⌈p/q⌉ subsets Q.
2 D ← empty dictionary.
3 forall e← 0 : ne − 1 do

// loop for all sequences
4 Ce ← ∅ // chosen point cloud frames
5 forall i← 0 : ⌈p/q⌉ − 1 do

// loop for subsets Q
6 Qi,j ← j-th frame in subset Qi.
7 Mi ← 1

q

∑q−1
j=0 ψ(Qi,j). // redundancy

8 ki ←
⌈
υ(Mi) · q

⌉
.

9 Ti ← select ki frames in Qi with the smallest Mi.
10 Ce ← Ce ∪ Ti.
11 Append key-value pair (e, Ce) into D.

Return: Dictionary D.
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Figure 7. Illustration of the SDSC convolution module.

tens of millions of trainable parameters [23,26,28,46,60,63]
due to the requirement for 3D (voxel-based) convolution
operations, to operate on the voxelized topology of the
otherwise unstructured LiDAR point cloud representation,
which suffer from both high computational training demands
and the risk of overfitting. Based on the observation that
depthwise separable convolution has shown results com-
parable with regular convolution in tasks such as image
classification but with significantly fewer trainable parame-
ters [12,24,25,37,40,43], here we pursue the use of such an
approach within 3D point cloud semantic segmentation.

As such we propose the first formulation of sparse variant
depthwise separable convolution [25] applied to 3D point
clouds, namely Sparse Depthwise Separable Convolution
(SDSC). SDSC combines the established computational ad-
vantages of sparse convolution for point cloud segmenta-
tion [20], with the significant trainable parameter reduction
offered by depthwise separable convolution [12].

Our SDSC module, as outlined in Fig. 7, initially takes a

tensor F ∈ RHF×WF×LF×M as input, where HF , WF , LF

and M denote radius, azimuth, height in the cylinder coordi-
nate [63] and channels respectively. Firstly, a sparse depth-
wise convolution SDC(M,M,Dk, s = 1) is applied, with
M input and output feature planes, a kernel size of Dk and
stride s in order to output a tensor T ∈ RHF×WF×LF×M .
Inside our sparse depthwise convolution, M sparse spatial
convolutions are performed independently over each input
channel using submanifold sparse convolution [20] due to
its tensor shape preserving property at no computational or
memory overhead. Secondly, the sparse pointwise convo-
lution SPC(M,N, 1, s = 1) projects the channels output
T by the sparse depthwise convolution onto a new chan-
nel space, to mix the information across different channels.
As a result, the sparse depthwise separable convolution
SDSC(M,N,Dk, s = 1) is the compound of the sparse
depthwise convolution and the sparse pointwise convolution,
namely SDSC(M,N,Dk, s = 1) = SDC ◦ SPC.

Using a sparse voxelized input representation similar
to [19], and a series of such SDSC sub-modules we con-
struct the popular Cylinder3D [63] sub-architectures within
our overall Mean Teacher architectural design (Fig. 2).
4. Evaluation
We evaluate our proposed Less is More 3D (LiM3D) ap-
proach against state-of-the-art 3D point cloud semantic seg-
mentation approaches using the SemanticKITTI [7] and
ScribbleKITTI [46] benchmark datasets.

4.1. Experimental Setup

SemanticKITTI [7] is a large-scale 3D point cloud dataset
for semantic scene understanding with 20 semantic classes
consisting of 22 sequences - [00 to 10 as training-split (of
which 08 as validation-split) + 11 to 21 as test-split].
ScribbleKITTI [46] is the first scribble (i.e. sparsely) anno-
tated dataset for LiDAR semantic segmentation providing
sparse annotations for the training split of SemanticKITTI
for 19 classes, with only 8.06% of points from the full Se-
manticKITTI dataset annotated.
Evaluation Protocol: Following previous work [29, 32, 46,
63], we report performance on the SemanticKITTI and Scrib-
bleKITTI training set for intermediate training steps, as this
metric provides an indication of the pseudo-labeling quality,
and on the validation set to assess the performance benefits
of each individual component. Performance is reported us-
ing the mean Intersection over Union (mIoU, as %) metric.



Table 1. Comparative mIoU for Range- and Voxel-based methods using uniform sampling (U), sequential partition (P) and ST-RFD sampling
(S): bold/underlined = best/2nd best; ∗ denotes reproduced result; – denotes missing result due to unavailability from original authors.

Repr. Samp. Method SemanticKITTI [7] ScribbleKITTI [46]
1% 5% 10% 20% 40% 50% 100% 1% 5% 10% 20% 40% 50% 100%

Range U LaserMix [32] (2022) 43.4 – 58.8 59.4 – 61.4 – 38.3 – 54.4 55.6 – 58.7 –

Voxel

U Cylinder3D [63] (CVPR’21) – 45.4 56.1 57.8 58.7 – 67.8 – 39.2 48.0 52.1 53.8 – 56.3
U LaserMix [32] (2022) 50.6 – 60.0 61.9 – 62.3 – 44.2 – 53.7 55.1 – 56.8 –
P Jiang et al. [29] (ICCV’21) – 41.8 49.9 58.8 59.9 – 65.8 – – – – – – –
U Unal et al. [46] (CVPR’22) – 49.9∗ 58.7∗ 59.1∗ 60.9 – 68.2∗ – 46.9∗ 54.2∗ 56.5∗ 58.6∗ – 61.3
S LiM3D+SDSC (ours) 57.2 57.6 61.0 61.7 62.1 62.7 67.5 55.8 56.1 56.9 57.2 58.9 59.3 60.7
S LiM3D (ours) 58.4 59.5 62.2 63.1 63.3 63.6 69.5 57.0 58.1 61.0 61.2 62.0 62.1 62.4

For semi-supervised training, we report over both the bench-
marks using the SemanticKITTI and ScribbleKITTI valida-
tion set under 5%, 10%, 20%, and 40% partitioning. We
further report the relative performance of semi-supervised or
scribble-supervised for ScribbleKITTI (SS) training to the
fully supervised upper-bound (FS) in percentages (SS/FS) to
further analyze semi-supervised performance and report the
results for the fully-supervised training on both validation
sets for reference. The trainable parameter count and number
of multiply-adds (multi-adds) are additionally provided as a
metric of computational cost.
Implementation Details: Training is performed using 4×
NVIDIA A100 80GB GPU without pre-trained weights with
a DDP shared training strategy [1] to maintain GPU scaling
efficiency, whilst reducing memory overhead significantly.
Specific hyper-parameters are set as follows - Mean Teacher:
κ = 0.99; unreliable pseudo-labeling: λC = 0.3, τ = 0.5;
ST-RFD: β = {7.45, 5.72, 4.00, 2.28, 0} for sampling {5%,
10%, 20%, 40%, 100%} labeled training frames, assuming
the remainder as unlabeled; Reflec-TTA: Nb = 10, s = 3
various Reflec-TTA bin sizes, following [46], we set each
bin bi = (ρ, ϕ) ∈ {(20, 40), (40, 80), (80, 120)}.

Se
K

Sc
K

Ground-Truth Our Approach Unal et al.

Figure 8. Comparing the 10% sampling split of SemanticKITTI
(SeK, first row) and ScribbleKITTI (ScK, second row) validation
set with ground-truth (left), our approach (middle) and Unal et
al. [46] (right) with areas of improvement highlighted.

4.2. Experimental Results
In Tab. 1, we present the performance of our Less is More 3D
(LiM3D) point cloud semantic segmentation approach both
with (LiM3D+SDSC) and without (LiM3D) SDSC in a side-

Table 2. Component-wise ablation of LiM3D (mIoU as %, and
#parameters in millions, M) on SemanticKITTI [7] training and
validation sets where UP, RF, RT, ST, SD denote Unreliable Pseudo-
labeling, Reflectivity Feature, Reflec-TTA, ST-RFD, and SDSC
module respectively.

UP RF RT ST SD
Training mIoU (%) Validation mIoU (%) #Params

5% 10% 20% 40% 5% 10% 20% 40% (M)

82.8 87.5 87.8 88.2 54.8 58.1 59.3 60.8 49.6
✓ – – – – 55.9 58.8 59.9 61.2 49.6

✓ ✓ 83.6 88.3 88.7 89.1 56.8 59.6 60.5 61.4 49.6
✓ ✓ – – – – 57.5 59.8 61.2 62.6 49.6
✓ ✓ ✓ – – – – 58.7 61.3 62.4 62.8 49.6

✓ ✓ ✓ ✓ 85.2 89.1 89.5 89.7 59.5 62.2 63.1 63.3 49.6
✓ ✓ ✓ ✓ ✓ 83.8 88.6 89.0 89.2 57.6 61.0 61.7 62.1 21.5

by-side comparison with leading contemporary state-of-the-
art approaches on the SemanticKITTI and ScribbleKITTI
benchmark validation sets to illustrate our approach offers su-
perior or comparable (within 1% mIoU) performance across
all sampling ratios. Furthermore, we present supporting
qualitative results in Fig. 8.

On SemanticKITTI, with a lack of available super-
vision, LiM3D shows a relative performance (SS/FS)
from 85.6% (5%-fully-supervised) to 91.1% (40%-fully-
supervised), and LiM3D+SDSC from 85.3% to 92.0%,
compared to their respective fully supervised upper-bound.
LiM3D/LiM3D+SDSC performance is also less sensitive to
reduced labeled data sampling compared with other methods.

Our model significantly outperforms on small ratio sam-
pling splits, e.g., 5% and 10%. LiM3D shows up to 19.8%
and 18.9% mIoU improvements whilst, with a smaller model
size LiM3D+SDSC again shows significant mIoU improve-
ments by up to 16.4% and 15.5% when compared with other
range and voxel-based methods respectively.

4.3. Ablation Studies
Effectiveness of Components. In Tab. 2 we ablate each
component of LiM3D step by step and report the perfor-
mance on the SemanticKITTI training set at the end of
training as an overall indicator of pseudo-labeling quality in
addition to the corresponding validation set.

As shown in Tab. 2, adding unreliable pseudo-labeling
(UP) in the distillation stage, we can increase the validmIoU



by +0.7% on average in validation set. Appending reflectiv-
ity features (RF) in the training stage, we further improve the
mIoU on the training set by +0.7% on average. Due to the
improvements in training, the model generates a higher qual-
ity of pseudo-labels, which results to a +0.5% increase in
mIoU in the validation set. If we disable reflectivity features
in the training stage, applying Reflec-TTA in the distilla-
tion stage alone, we then get an average improvement of
+1.3% compared with pseudo-labeling only. On the whole,
enabling all reflectivity-based components (RF+RT) shows
great improvements of up to +2.8% in validation mIoU.

Table 3. The computation cost and mIoU (in percentage) under
5%-labeled training results on SemanticKITTI (SeK) and Scrib-
bleKITTI (ScK) validation set.

Method # Parameters # Mult-Adds SeK [7] ScK [46]

Cylider3D [63] 56.3 476.9M 45.4 39.2
Unal et al. [46] 49.6 420.2M 49.9 46.9
2DPASS [58] 26.5 217.4M 51.7 45.1
MinkowskiNet [13] 21.7 114.0G 42.4 35.8
SPVNAS [44] 12.5 73.8G 45.1 38.9
LiM3D+SDSC (ours) 21.5 182.0M 57.6 54.7
LiM3D (ours) 49.6 420.2M 59.5 58.1

Table 4. Effects of ST-RFD sampling on SemanticKITTI and
ScribbleKITTI validation set (mIoU as %).

Sampling SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Random 58.5 61.6 62.6 62.7 57.1 60.3 60.5 60.9
Uniform 58.7 61.3 62.4 62.8 56.9 60.6 60.3 61.0

ST-RFD-R 59.1 62.4 62.9 63.4 58.0 60.7 61.2 61.8
ST-RFD 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Table 5. Effects of differing reliability using pseudo voxels on Se-
manticKITTI validation set, measured by the entropy of voxel-wise
prediction. Unreliable and Reliable: selecting negative candidates
with top 20% highest entropy scores and bottom 20% counterpart
respectively. Random: sampling randomly regardless of entropy.

Ratio Unreliable Reliable Random
mIoU SS/FF mIoU SS/FF mIoU SS/FF

5% 59.5 85.6 57.2 82.3 56.4 81.2
10% 62.2 89.5 60.8 87.5 59.7 85.9
20% 63.1 90.8 61.4 88.3 60.5 87.1
40% 63.3 91.1 62.8 90.4 61.3 88.2

Table 6. Reflectivity (Reflec-TTA) vs. Intensity (intensity-based
TTA) on SemanticKITTI and ScribbleKITTI validation set (mIoU, %).

TTA SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Intensity 56.2 59.1 59.8 60.9 55.7 57.5 57.9 59.2
Reflectivity 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Substituting the uniform sampling with our ST-RFD strat-
egy, we observe further average improvements of +1.0% and
+0.8% on training and validation respectively (Tab. 2).

Our SDSC module reduces the trainable parameters of
our model by 57%, with a performance cost of −0.7%
and −1.4% mIoU on training and validation respectively

(Tab. 2). Finally, we provide two models, one without SDSC
(LiM3D) and one with (LiM3D+SDSC), corresponding to
the bottom two rows of Tab. 2.
Effectiveness of SDSC module. In Tab. 3, we com-
pare our LiM3D and LiM3D+SDSC with recent state-of-
the-art methods under 5%-labeled semi-supervised train-
ing on the SemanticKITTI and ScribbleKITTI validation
sets. LiM3D+SDSC outperforms the voxel-based meth-
ods [46, 63] with at least a 2.3× reduction in model
size. Similarly, with comparable model size [13, 44, 58],
LiM3D+SDSC has higher mIoU in both datasets and up to
641× fewer multiply-add operations.
Effectiveness of ST-RFD strategy. In Tab. 4, we illus-
trate the effectiveness of our ST-RFD strategy by comparing
LiM3D with two widely-used strategies in semi-supervised
training, i.e., random sampling and uniform sampling on
SemanticKITTI [7] and ScribbleKITTI [46] validation set.
Whilst uniform and random sampling have comparable
results on both validation sets, simply applying our ST-
RFD strategy improves the baseline by +0.90%, +0.75%,
+0.60% and +0.55% on SemanticKITTI under 5%, 10%,
20% and 40% sampling protocol respectively. Furthermore,
using corresponding range images of point cloud, rather than
RGB images to compute the spatio-temporal redundancy
within ST-RFD (see ST-RFD-R in Tab. 4), has no significant
difference on the performance.
Effectiveness of Unreliable Pseudo-Labeling. In Tab. 5,
we evaluate selecting negative candidates with different re-
liability to illustrate the improvements of using unreliable
pseudo-labels in semi-supervised semantic segmentation.
The “Unreliable” selecting of negative candidates outper-
forms other alternative methodologies, showing the positive
performance impact of unreliable pseudo-labels.
Effectiveness of Reflec-TTA. In Tab. 2, we compare
LiM3D performance with and without Reflec-TTA and fur-
ther experiment on the SemanticKITTI and ScribbleKITTI
validation set in Tab. 6. This demonstrates that the LiDAR
point-wise intensity feature I⊛, in place of the distance-
normalized reflectivity feature R⊛, offers inferior on-task
performance.

5. Conclusion
This paper presents an efficient semi-supervised architecture
for 3D point cloud semantic segmentation, which achieves
more in terms of performance with less computational costs,
less annotations, and less trainable model parameters (i.e.,
Less is More, LiM3D). Our architecture consists of three
novel contributions: the SDSC convolution module, the ST-
RFD sampling strategy, and the pseudo-labeling method in-
formed by LiDAR reflectivity. These individual components
can be applied to any 3D semantic segmentation architec-
ture to reduce the gap between semi or weakly-supervised
and fully-supervised learning on task performance, whilst
managing model complexity and computation costs.
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