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A. Performance with Different Backbones

In Tab. A1, alongside Cylinder3D [8], we also implement our
architecture with popular backbone networks [2, 5] widely-
used in 3D semantic segmentation.

B. Runtime Comparison

We conduct a runtime comparison between LiM3D and SO-
TAs on NVIDIA A100 GPU and Graphcore IPU-POD16
for Intelligence Processing Unit (IPU) acceleration. Sum-
mary inference times per item: LiM3D (ours, GPU) - 0.51s,
Cylinder3D [8] (GPU) - 0.48s, Unal et al. [6] (GPU) - 0.53s,
LiM3D+SDSC (ours, IPU) - 0.12s. SDSC could be slower
on GPU due to its lower arithmetic intensity (ratio of com-
pute to memory operation) [3, 7], but the high-bandwidth
on-chip memory in IPU accelerator significantly improves
the efficiency.

C. More Quantitative Results on Semi-
supervised Segmentation

Besides {5%, 10%, 20%, 40%} labeled frames training,
we also report our results with less than 5% label frames
shown in Tab. A2. By applying our proposed architecture
for semi-supervised and scribble-supervised 3D semantic
segmentation, LiM3D and LiM3D+SDSC achieve higher
than 80% relative performances (SS/FS) comparing with
fully-supervised methods with less than only 1% labeled,
i.e., 191 frames (Tab. A2).

D. More Qualitative Results

Figs. A1 and A2 show a higher-resolution version of qual-
itative results that our method has superior performance.
Fig. A3 compares {5%, 10%, 20%, 40%} sampling splits
of SemanticKITTI [1] using LiM3D (ours). Note that using
our semi-supervised methodology, the results training with
very few ground-truth labels (e.g., 5% and 10%) can achieve
comparable performance to the training with a large number
of labels (see Fig. A3, the 1-st and 2-nd rows v.s. 4-th row),
with only subtle differences shown in the green and red cir-
cle. In Fig. A4, the magnification of regional details shows
that our method can achieve better segmentation results than

other methods, especially in the category of vegetation,
fence, sidewalk, etc.

E. Parameters and Computation Costs Analysis
on SDSC Sub-module

Given a Tensor F ∈ RHF×WF×LF×M , where HF , WF ,
LF and M denote the radius, azimuth, height in the cylinder
coordinate [8] and channels respectively. Applying convolu-
tion operation only for the active site of the sparse 3D point
cloud, the computational cost (in FLOPs) of submanifold
sparse convolution (SSC, [4]) is a×M ×N for the active
site, where M is the number of input channels as defined
previously, and N is the number of output channels. a is the
number of active inputs to the spatial location defined in [4].
The computational cost for the inactive site is 0.

Since our SDSC sub-module consists of a sparse depth-
wise convolution (SDC) and a sparse pointwise convolution
(SPC), the computational cost for SDSC is the sum cost of
those two parts. SDC has a computational cost of

a×M ×HF ×WF × LF . (A1)

SPC computes a linear combination of the SDC output via a
1× 1 convolution, which has the computational cost of

M ×N ×HF ×WF × LF . (A2)

As a result, the computational cost of SDSC is the sum
of Eqs. (A1) and (A2), i.e.,

a×M×HF ×WF ×LF +M×N×HF ×WF ×LF . (A3)

The ratio of computational cost of SDSC to SSC [4] for
active site, i.e., cost(SDSC) : cost(SSC), is:

a×M ×HF ×WF × LF +M ×N ×HF ×WF × LF

a×M ×N ×HF ×WF × LF

=
1

N
+

1

a
≊ 1

N
(a ≫ N).

(A4)
Similar to the computational cost analysis, the parameters of
SDSC is also the sum of SDC and SPC. The ratio of model
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Table A1. 3D semantic segmentation results of LiM3D (ours) evaluated on SemanticKITTI [1] and ScribbleKITTI [6] valid-set with 10%
labeled data, using different backbones. Alongside the per-class metrics, we show the relative performance of the semi-supervised approach
against the fully supervised (SS/FS). S: with SDSC sub-module (✓) or without SDSC sub-module, i.e., with normal sparse convolution.

Model Dataset S mIoU SS/FF ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

ot
he

rv
eh

ic
le

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

ro
ad

pa
rk

in
g

si
de

w
al

k

ot
he

rg
ro

un
d

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

tr
un

k

te
rr

ai
n

po
le

tr
af

fic
si

gn

Semantic 62.2 89.5 95.5 47.6 65.2 60.7 42.4 75.2 84.3 0.0 94.2 42.4 80.7 5.4 91.0 61.1 86.6 65.7 70.7 64.0 49.2
LiM3D (ours) Semantic ✓ 61.0 87.8 95.3 43.9 59.2 46.2 47.0 71.4 79.8 1.6 93.8 44.0 80.0 4.4 90.8 60.4 87.7 64.5 73.5 63.8 51.4
+ Cylinder3D [8] Scribble 61.0 87.8 95.0 34.5 52.9 61.5 41.3 71.0 85.6 0.0 93.7 44.4 79.9 0.4 90.1 58.1 87.9 61.5 74.8 65.3 44.3

Scribble ✓ 56.7 81.6 95.6 48.9 45.2 16.0 43.1 66.9 81.8 0.0 91.8 30.9 75.7 1.8 90.0 59.2 86.6 62.6 69.8 63.4 46.8

Semantic 60.4 86.9 94.6 44.3 47.1 70.2 29.5 68.7 80.8 0.0 93.6 38.4 79.6 0.1 90.2 58.7 88.2 66.1 75.6 65.5 58.9
LiM3D (ours) Semantic ✓ 59.4 85.5 94.5 43.3 47.1 70.2 29.5 66.7 76.0 0.0 93.5 38.1 79.2 0.1 90.1 58.4 87.8 65.1 74.3 64.1 50.1
+ MinkowskiNet [2] Scribble 56.2 80.9 93.8 42.7 37.6 68.4 33.7 54.2 63.5 0.0 91.9 39.9 76.7 0.1 88.9 61.9 86.9 67.3 74.3 59.1 27.7

Scribble ✓ 50.3 72.4 92.8 08.8 30.3 68.2 36.3 27.2 56.6 1.7 88.0 47.9 71.8 2.7 85.3 63.9 86.7 71.2 74.7 56.6 13.6

Semantic 62.1 89.4 94.6 48.3 59.1 72.2 45.9 62.2 68.1 0.0 91.7 59.2 79.0 1.7 91.6 65.0 86.6 70.9 71.4 64.2 42.8
LiM3D (ours) Semantic ✓ 60.8 87.5 92.7 29.6 64.8 72.9 51.2 54.0 47.1 0.0 89.0 58.2 75.2 1.9 88.8 68.6 88.9 73.4 77.8 64.4 30.8
+ SPVCNN [5] Scribble 59.6 85.8 92.5 29.4 63.7 72.8 50.8 52.2 43.2 0.0 89.8 56.3 75.1 0.6 88.6 66.7 87.6 71.0 74.3 62.3 29.6

Scribble ✓ 54.7 78.7 91.0 23.1 61.8 73.1 45.5 30.0 36.3 1.6 87.5 56.2 72.7 0.7 86.7 68.3 87.7 72.8 75.8 61.3 19.3

Table A2. 3D semantic segmentation results of LiM3D (ours) evaluated on SemanticKITTI [1] and ScribbleKITTI [6] valid-set with %1
and 2% labeled data. Alongside the per-class metrics, we show the relative performance of the semi-supervised approach against the fully
supervised (SS/FS). S: with SDSC sub-module (✓) or without SDSC sub-module, i.e., with normal sparse convolution.
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Semantic 59.3 85.3 95.6 37.6 50.1 54.4 46.0 68.8 77.1 0.0 87.9 32.8 76.6 2.0 91.4 54.8 89.5 69.5 77.1 66.2 49.4
LiM3D (ours) Semantic ✓ 58.7 84.5 94.8 37.1 55.0 56.2 45.2 66.1 75.4 0.0 87.0 32.5 75.9 2.1 89.1 49.7 89.3 68.0 76.0 65.8 45.9
2% / 383 frames Scribble 58.2 83.7 92.5 35.6 52.0 57.1 49.4 66.8 78.5 0.0 85.6 30.2 74.4 2.4 89.7 54.0 88.2 66.9 74.4 63.7 47.7

Scribble ✓ 56.8 81.7 93.1 34.9 47.0 50.9 43.8 64.1 75.6 0.0 85.2 29.5 73.9 2.0 88.8 49.5 88.2 66.9 74.8 64.4 47.4

Semantic 58.4 84.0 92.6 37.5 51.2 50.4 47.9 68.6 80.3 0.0 86.3 33.5 74.7 3.9 89.4 51.4 88.3 67.4 75.1 64.8 45.8
LiM3D (ours) Semantic ✓ 57.2 82.3 92.6 34.5 47.2 54.5 44.3 65.5 76.6 0.0 85.5 29.2 74.3 2.5 88.9 49.7 88.1 67.1 74.9 63.9 47.0
1% / 191 frames Scribble 57.0 82.0 93.1 31.7 46.8 55.4 45.2 65.2 71.8 0.0 85.3 29.8 74.0 2.7 89.1 50.9 88.3 67.8 75.4 64.2 45.9

Scribble ✓ 55.8 80.3 92.7 27.6 43.6 50.6 42.3 60.6 73.9 0.0 85.3 29.1 74.2 2.6 87.3 49.7 87.2 68.5 70.2 64.5 43.6

parameters of SDSC to SSC [4] is:

DK ×M ×HF ×WF × LF +M ×N ×HF ×WF × LF

DK ×M ×N ×HF ×WF × LF

=
1

N
+

1

DK
≊ 1

DK
(N ≫ DK),

(A5)
where DK is the dimension of convolution kernel K of size
DK,1 ×DK,2 ×DK,3, i.e., DK = DK,1 ×DK,2 ×DK,3.

LiM3D+SDSC uses SDSC sub-module as the basic build-
ing block for constructing other convolution-based modules
in Cylinder3D (e.g., residual block, upsample block, and
downsample block). Take the residual block as an example,
SDSC uses approximately 32x, 64x, · · · , 512x less computa-
tion than SSC for active sites when N = {32, 64, · · · , 512}
(Eq. (A4)). SDSC-based residual block with a kernel size of
1× 3× 1 has 3x fewer parameters than the SSC-based resid-
ual block with the same kernel size, and 9x fewer parameters
with 3× 1× 3 kernel size (Eq. (A5)).
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Figure A1. Comparing the 10% sampling split of SemanticKITTI [1] validation set with ground-truth (left), our approach (middle) and Unal
et al. [6] (right) with areas of improvement highlighted in green, and areas of underperformance in red.
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Figure A2. Comparing the 10% sampling split of SemanticKITTI [1] validation set with ground-truth (left), our approach (middle) and Unal
et al. [6] (right) with areas of improvement highlighted in green, and areas of underperformance in red.
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Figure A3. Comparing the 5%, 10%, 20%, 40% sampling split of SemanticKITTI [1] validation set with ground-truth (bottom) with areas of
improvement highlighted in green, and areas of underperformance in red.
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Ground-Truth Our Approach Unal et al. [6]

Figure A4. Magnification of regional details: comparing the 10% sampling split of SemanticKITTI [1] validation set with ground-truth (left),
our approach (middle) and Unal et al. [6] (right) with areas of improvement highlighted in green, and areas of underperformance in red.
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