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Two-Person Interaction Augmentation with Skeleton Priors

Supplementary Material

1. More Details on Dataset001

One instance of the nine motions (Judo, Face-to-back, Turn-002
around, Hold-body, Around-the-back, Back-flip, Big-ben,003
Noser and Chandelle) was captured from different sub-004
jects by different systems. Therefore, we have two skele-005
tons, with 25 joints and 24 bones (Judo, Face-to-back,006
Turn-around and Hold-body), and 17 joints and 16 bones007
(Around-the-back, Back-flip, Big-ben, Noser and Chan-008
delle), shown in Fig. 1. The motions in D1 and D2 are009
shown in Fig. 2 and Fig. 3.010

For each captured motion, we vary bones with scales011
within [0.75, 1.25] with a 0.05 spacing, where the origi-012
nal skeleton is used as the template skeleton and labeled as013
scale 1. An exhaustive permutation of all possible scaling is014
impractical. Therefore, we only use full-body uniform scal-015
ing and single-bone scaling on the upper-body bones which016
are heavily involved in interactions. We manually specify017
the skeleton variations and use InteractionMesh [3] to gen-018
erate motions.019

InteractionMesh is an optimization framework where the020
required input is the original motion and the scaled target021
skeleton. InteractionMesh make a mesh structure by con-022
necting every pair of points between two characters, called023
interaction mesh. When adapting the motion for a desired024
scaled skeleton, it minimizes the Laplacian energy, i.e. a de-025
formation energy term of the interaction mesh, to keep the026
spatial relations as much as possible for every pair of joints.027
Using InteractionMesh, instead of hiring more actors, al-028
lows us to: (1) have exact control over the bone lengths; (2)029
explore atypical skeleton/body sizes, e.g. left arm longer030
than right arm. However, the optimization process is sen-031
sitive to initialization and weight tuning of the object func-032
tion. For each skeleton variation, we manually conduct sev-033
eral rounds of optimizations and visually inspect the quality034
of the generated motion, until it become satisfactory.035

Admittedly, compared with the only dataset for interac-036
tions [2], the number of interactions in our dataset is smaller037
(9 vs 16), but our emphasis is the diversity of body sizes.038
Overall, we have 9 base motions, a total of 967 body varia-039
tions with 351045 frames, which is larger than [2] in terms040
of the number of sequences and frames.041

2. Additional Results and Details042

2.1. Detailed experiments043

The full comparison results of different methods for both044
retargeting and generation are shown in Tab. 1-Tab. 9.045

Figure 1. Two skeletons in our dataset. Left: 25 joints, Right: 17
joints

Figure 2. The base motion in D1(M1-M4). From top to bottom:
Judo, Face-to-back, Turn-around and Hold-body.

2.2. Skeletal Visualization vs Body Visualization. 046

Skeletal visualization is widely adopted in existing research 047
(e.g. character animation, motion prediction, activity recog- 048
nition, etc.), but we do notice a recent trend of showing 049
body shapes with skeletal motions. Theoretically, it is pos- 050
sible to generate body meshes e.g. via SMPL [6]. How- 051
ever, for our problem, this is not the case because generat- 052
ing/adapting body meshes for varying bone lengths is non- 053
trivial and is itself an entirely different topic. Not only is 054
there no body geometry in the data we used, but the mo- 055
tion contains rich contacts between characters. Therefore, 056
generated body meshes could easily lead to penetration so 057
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

0.673/2.569 0.834/5.642 0.517/2.771 0.681/3.447 0.298/1.840
0.821/4.225 1.684/8.018 1.206/4.060 1.372/3.530 0.463/3.571
1.251/6.031 3.604/6.858 1.363/4.823 1.622/5.166 0.942/4.744
1.521/6.455 4.002/6.840 1.684/5.690 1.812/6.110 1.130/4.912

Eb

0.093/0.355 0.120/0.484 0.109/0.835 0.136/0.650 0.072/0.270
0.127/1.097 0.135/1.067 0.164/1.014 0.158/1.270 0.102/0.506
0.234/1.214 0.262/1.42 0.273/1.449 0.278/1.516 0.189/0.763
0.448/1.368 0.403/1.653 0.428/1.506 0.418/1.834 0.305/1.053

JPD

4.078 4.358 6.654 6.877 3.008
4.938 4.877 6.821 7.239 4.248
6.674 7.034 8.345 8.003 4.443
7.894 8.234 8.861 8.642 4.754

FID

3.574/4.928 6.784/14.304 5.421/11.483 3.136/8.09 2.134/3.734
4.841/8.103 7.541/24.021 7.412/11.838 4.158/9.046 3.824/4.122
6.854/7.112 7.984/25.080 8.025/15.867 4.278/10.846 4.033/4.109
7.931/8.761 12.841/26.721 9.541/16.207 6.418/10.654 4.214/4.524

Eb

0.254/0.350 0.365/0.569 0.315/0.549 0.228/0.518 0.176/0.184
0.621/0.925 0.421/0.825 0.512/1.480 0.862/0.926 0.285/0.423
0.687/1.763 1.654/2.276 1.862/2.820 1.923/1.947 0.532/0.452
1.325/3.081 2.284/3.022 2.684/3.424 2.047/5.267 0.737/0.769

JPD

7.542 8.844 6.543 7.832 3.421
8.043 9.641 7.965 8.239 4.304
8.821 10.632 8.517 9.632 4.903
9.852 12.245 9.786 10.985 5.067

Table 1. Comparison on Judo retargeting (top) and generation (bottom). XX/XX are Character A/B results. All results are per joint results.
The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

manually created meshes are needed. Furthermore, since058
we sample different bone lengths, manual creation of body059
geometry for every scaled skeleton would be required, as060
naive non-uniform scaling on the body mesh designed for061
a template skeleton would easily cause mesh deformation062
artefacts or contact breach. Methods such as SMPL might063
help but with no guarantee, because arbitrary bone scaling064
easily leads to out-of-distribution skeletons deviating from065
their training data. We tested SMPL and show one such ex-066
ample in Fig. 4. But this does not mean our motion quality067
is low. The motion quality can be visually inspected in the068
video.069

2.3. Generation Diversity070

Our model contains 3 learned Gaussian distributions and071
therefore is intrinsically stochastic. We show a Judo mo-072
tion sampled multiple times (in different colors) using the073
same skeleton in Fig. 5 (zoom-in for better visualization).074
While there are motion diversity, we do realize that the mo-075
tions do not visually show big variations. Note that this is076
due to the fact that the skeleton is exactly the same for all077
motions, and more importantly the key interaction features078
such as contacts need to be maintained in different sam-079

ples. These contacts implicitly act as constraints for aug- 080
mentation. However, as shown before, when the bone sizes 081
change, bigger diversities can be seen. 082

2.4. Generalizability on Reduced Training Samples 083

Since high-quality interaction motion is hard to capture and 084
data augmentation is not easy, it is highly desirable if aug- 085
mentation can work on as few training samples as possi- 086
ble. To test this, we choose Face-to-back (M2) and Big-ben 087
(M7) under Cross-scale-interaction, and reduce the training 088
samples to 24, to 12 and 6. More specifically, when using 089
the scale [0.75, 0.85] and [1.15, 1.25] of M2 as the test- 090
ing data, we randomly select 24, 12 and 6 training samples 091
from the scale [0.95, 1.05] of M3-M4 for training. Simi- 092
larly, when choosing the scale [0.75, 0.85] and [1.15, 1.25] 093
of M7 as the testing data, we randomly select 24, 12 and 6 094
training samples from the scale [0.95, 1.05] of M8-M9 for 095
training. Note this is a very challenging setting. 096

Tab. 10 shows a quantitative comparison. Note met- 097
rics have different scales and cross-metric comparison is 098
not meaningful. Unsurprisingly, all metrics become worse 099
when the number of training samples decreases. However, 100
the increase of errors is slow compared with the correspond- 101
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

0.227/0.328 0.445/1.474 0.102/0.232 0.424/2.760 0.058/0.076
0.234/0.335 0.544/1.554 0.124/0.372 1.732/3.714 0.263/0.425
0.297/0.451 0.548/1.573 0.156/0.434 1.988/3.876 0.352/0.990
0.725/1.812 0.641/1.785 0.921/1.932 4.412/5.689 0.630/1.472

Eb

0.009/0.018 0.040/0.107 0.035/0.048 0.120/0.727 0.002/0.006
0.022/0.053 0.082/0.241 0.056/0.078 0.312/0.739 0.012/0.024
0.054/0.081 0.103/0.357 0.841/0.959 0.327/0.884 0.089/0.085
0.245/0.432 0.584/0.633 1.294/2.230 0.972/1.064 0.045/0.217

JPD

0.599 0.517 0.330 0.465 0.104
0.658 0.505 0.414 0.302 0.241
0.892 0.703 0.678 0.526 0.625
1.284 1.724 1.595 0.951 0.845

FID

2.637/7.218 21.238/37.530 4.825/14.917 1.379/2.782 1.134/2.304
3.118/8.745 20.457/35.483 5.215/14.551 1.751/3.451 1.824/2.904
3.331/8.286 25.844/38.517 5.466/19.651 2.154/3.756 2.533/3.621
5.542/9.844 26.723/40.425 7.983/24.842 2.831/4.237 2.814/3.698

Eb

0.032/0.046 0.186/0.200 1.157/1.965 0.125/0.753 0.001/0.009
0.043/0.062 0.267/0.352 1.305/2.021 0.163/0.847 0.018/0.028
0.107/0.108 0.349/0.514 2.687/2.984 0.195/0.954 0.053/0.141
0.342/0.504 0.652/0.721 3.864/4.030 0.642/1.231 0.073/0.213

JPD

1.017 3.916 2.469 0.369 0.101
1.157 4.148 2.672 0.454 0.645
1.872 6.216 2.896 0.648 1.004
1.904 7.385 4.542 2.034 1.317

Table 2. Comparison on Face-to-back retargeting (top) and generation (bottom). XX/XX are on Character A/B. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

ing experiments in retargeting and generation part , showing102
our method has high data efficiency. We show more results103
in the video.104

2.5. Extrapolating to Large Unseen Scales105

There is one example of Turn-around on 0.65 and 1.3 in106
the Fig. 6 , which shows that our model can extrapolate107
to larger skeletal variations when trained only using data108
on scales [0.95, 1.05]. More examples can be found in the109
video.110

3. Methodology Details111

3.1. ST-GCN Layers112

Spatio-temporal Graph Convolutions (ST-GCNs)113
are widely used in analyzing human motions.114
Our construction of it is inspired by [5]. Given115
q = {q0, . . . , qT } ∈ RT×N×3, where T is frame116
number of a motion, N is the number of joints and each117
joint location is represented by it 3D coordinates, we first118
construct a graph adjacency matrix An ∈ Rn×n of the119
skeleton, indicating the connectivity between joints. The120
spatial graph convolution of a layer can be represented as:121

Xt
i+1 = ReLU(AnX

t
iWi +Xt

iUi) ∈ Rn×hi (1) 122

where the subscript of X is the layer index, t is a frame 123
and hi is the latent dimension of the layer. Wi and Ui are 124
trainable network weights. Further the temporal convolu- 125
tion can be achieved by using standard 2D convolution on 126
X . In addition, we also add one Batch Normalization layer 127
and a ReLU layer before the 2D convolution and one more 128
Batch Normalization layer and one Dropout layer after the 129
2D convolution. After combining the spatial and temporal 130
convolution, we have one ST-GCN layer. 131

3.2. G-GRU Layers 132

Graph Gated Recurrent Unit Network, or G-GRU is based 133
on standard GRU network [1], which is a Recurrent Neu- 134
ral Network which can model time-series data. Traditional 135
GRU networks do not consider structured data such as 136
graphs. A combination of GRU and Graph Neural Network 137
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

0.454/0.874 0.622/1.121 0.334/1.244 1.735/2.714 0.398/1.754
0.534/0.925 0.751/1.334 0.453/1.348 1.956/2.819 0.263/2.863
0.796/2.071 0.728/1.127 0.879/2.941 2.001/2.771 0.352/2.936
1.296/2.842 1.121/2.254 1.641/3.263 2.942/3.234 0.530/3.326

Eb

0.020/0.038 0.075/0.082 0.363/0.473 0.320/0.773 0.003/0.037
0.050/0.079 0.098/0.112 0.383/0.536 0.334/0.801 0.028/0.104
0.112/0.135 0.102/0.133 0.349/0.551 0.503/0.978 0.059/0.119
0.234/0.524 0.221/0.508 0.641/0.897 0.842/1.235 0.105/0.155

JPD

3.359 2.291 3.765 2.155 2.274
3.507 3.814 4.202 2.261 2.948
3.741 4.001 4.268 3.054 3.147
4.542 6.123 4.964 4.637 3.493

FID

6.806/7.702 9.037/10.487 9.830/11.495 4.407/8.824 3.214/7.932
7.023/8.112 10.148/12.046 11.049/16.839 4.466/8.847 3.854/9.258
7.214/8.849 12.645/20.984 12.057/18.213 5.121/9.157 3.708/9.716

8.678/10.845 13.412/23.582 14.325/21.842 6.051/9.821 3.923/9.803

Eb

0.413/0.454 0.315/0.445 0.940/1.986 0.332/0.776 0.006/0.054
0.464/0.457 0.486/0.781 1.001/2.068 0.348/0.816 0.025/0.163
0.516/0.604 0.715/1.033 1.104/2.211 0.401/0.849 0.052/0.202
0.605/0.840 1.254/1.930 1.529/2.842 0.645/1.731 0.137/0.169

JPD

3.678 4.120 4.399 3.206 2.134
3.845 4.368 4.501 4.025 2.872
4.008 4.808 4.815 4.419 3.095
4.845 5.614 5.325 5.004 3.317

Table 3. Comparison on Turn-around retargeting (top) and generation (bottom). XX/XX are on Character A/B. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

can overcome this shortcoming [5]:138

rt = σ(rinput(X
t)) + rhidden(AsH

tW ),139

ut = σ(uiput(X
t)) + uhidden(AsH

tW ),140

ct = tanh(cinput(X
t)) + rt ⊙ chidden(AsH

tW ),141

Ht+1 = utHt + (1− ut)⊙ ct (2)142

where rinput, uinput, cinput, rhidden, uhidden and chidden143
are trainable functions. Xt is the input, Ht is the hidden144
state at t and W is trainable weights. As is the adjacency145
matrix.146

3.3. Network Implementation and Training Details147

The network implementation details of ST-GCN1 and G-148
GRU1, including network layer configurations and archi-149
tecture, are shown in Tab. 11 and Tab. 12. The network150
details of ST-GCN2, ST-GCN3 and G-GRU2 are shown are151
Tab.13 - Tab. 16.152

For training, we use a batch size 32 and Adam as the op-153
timizer (learning rate = 0.001) for all our experiments. We154
train our model on a Nvidia Geforce RTX2080 Ti Graphics155
Card. The average training time for different models is 243156
minutes with training epoch = 50, and the inference time =157

0.323s per motion. 158

4. Alternative Architectures 159

We use a frame-based Convolution Neural Networks 160
(CNNs) and a frame-based Graph Convolution Networks 161
(GCNs) as the encoders (MLP1, ST-GCN1-3) and decoders 162
(MLP2, G-GRU1-2) in all three VAEs denoted as F-CNNs 163
and F-GCNs. In addition, we also use motion-based CNNs 164
(M-CNNs) and GCNs (M-GCNs). The M-CNNs follow 165
the architecture in [4]. For M-GCNs, we mirror the GCN 166
encoders in ST-GCN1, ST-GCN2 and ST-GCN3, and use 167
them as the decoders. Due to the limited data, we did not 168
choose architectures that require large amounts of data such 169
as Transformers, Flows or Diffusion models. 170

Totally, there are four baseline networks: Frame-based 171
CNNs (F-CNNs), Frame-based GCNs (F-GCNs), Motion- 172
based CNNs (M-CNNs) and Motion-based GCNs (M- 173
GCNs). The detailed architectures of them are given in Tab. 174
17, Tab. 18, Tab. 19, and Tab. 20, respectively. Numer- 175
ically, our current setting significantly outperforms all the 176
other alternatives by as much as 66.99% in Er, 49.42% in 177
Eb (retargeting), 56.25% in JPD (retargeting), 72.17% in 178
FID, 74.82% in Eb (generation) and 61.32% in JPD (gener- 179
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

0.230/0.258 0.504/1.178 0.077/0.289 0.339/0.860 0.098/0.284
0.257/0.291 0.604/1.258 0.125/0.291 0.458/0.909 0.163/0.779
0.304/0.345 0.771/1.541 0.201/0.294 0.517/0.931 0.252/0.982
0.651/0.837 1.204/1.976 0.604/0.849 0.915/1.677 0.430/1.364

Eb

0.007/0.014 0.049/0.055 0.045/0.059 0.127/0.569 0.003/0.031
0.015/0.041 0.051/0.059 0.057/0.169 0.199/0.605 0.007/0.151
0.049/0.064 0.074/0.098 0.099/0.203 0.232/0.771 0.012/0.196
0.184/0.251 0.142/0.194 0.204/0.531 0.671/0.949 0.025/0.199

JPD

0.617 2.076 0.807 1.685 0.264
0.824 2.148 0.814 1.694 0.418
0.835 2.548 1.215 1.805 0.589
1.542 4.287 2.674 3.004 0.624

FID

3.585/8.344 20.815/24.261 0.721/3.867 0.322/3.513 0.214/2.944
3.748/9.424 21.784/28.454 0.915/2.245 1.751/2.158 0.854/3.442
3.982/9.458 22.511/30.368 1.052/2.244 1.981/2.752 0.712/4.584
4.874/12.828 23.074/29.241 2.452/3.657 3.642/3.777 0.923/5.265

Eb

0.056/0.101 0.504/0.591 0.097/0.519 0.137/0.587 0.006/0.054
0.077/0.125 0.607/0.614 0.128/0.684 0.252/0.640 0.025/0.149
0.098/0.130 0.701/0.848 0.157/0.745 0.425/0.672 0.052/0.170
0.249/0.341 1.204/1.899 0.531/1.112 0.822/1.054 0.067/0.191

JPD

1.105 2.217 1.304 1.707 0.297
1.235 2.148 1.365 1.735 1.071
1.442 3.331 1.317 1.844 1.347
2.140 4.640 2.384 2.896 1.915

Table 4. Comparison on Hold-body retargeting (top) and generation (bottom). XX/XX are on Character A/B. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

ation).180
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

1.586/1.614 2.277/4.159 3.120/4.384 1.759/4.045 1.153/2.797
1.662/4.770 2.282/4.342 3.252/4.844 2.201/4.349 1.851/3.497
1.976/4.824 2.044/4.157 3.924/4.121 2.471/4.174 2.252/3.882
2.782/5.452 3.451/5.735 4.812/6.328 3.421/5.418 3.453/4.275

Eb

0.141/0.225 0.088/0.226 0.030/0.063 0.003/0.031 0.001/0.005
0.156/0.267 0.135/0.287 0.105/0.161 0.010/0.061 0.003/0.029
0.225/0.305 0.197/0.334 0.210/0.370 0.017/0.120 0.018/0.050
0.647/0.812 0.729/0.964 0.748/0.792 0.079/0.234 0.055/0.079

JPD

1.844 3.841 3.525 0.307 0.398
2.217 3.428 3.191 0.941 0.837
2.618 3.627 3.224 1.715 1.672
3.542 4.521 4.751 2.642 2.114

FID

0.349/0.746 5.142/8.672 1.824/1.971 0.337/0.584 0.214/1.166
0.662/0.997 5.771/9.071 2.054/2.642 0.417/0.742 0.854/1.712
1.087/1.671 6.041/9.817 2.511/2.912 0.661/0.942 1.212/1.650
1.574/1.942 8.452/10.122 2.981/3.514 0.967/1.345 1.723/2.071

Eb

0.170/0.317 0.565/0.953 0.105/0.251 0.006/0.040 0.006/0.014
0.204/0.391 0.642/1.074 0.287/0.354 0.038/0.084 0.025/0.037
0.396/0.504 0.699/1.611 0.487/0.515 0.051/0.191 0.042/0.058
0.925/1.213 1.077/1.921 1.073/1.258 0.254/0.293 0.047/0.141

JPD

2.485 4.253 3.671 0.345 0.604
2.671 4.506 3.851 1.414 1.157
3.211 5.011 4.514 1.892 1.894
4.359 5.824 5.942 2.487 2.268

Table 5. Comparison on Around-the-back motion retargeting (top) and generation (bottom). XX/XX are on Character A/B. All results are
per joint results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

Figure 3. The base motion in D2 (M5-M9). From top to bottom:
Around-the-back, Back-flip, Big-ben, Noser and Chandelle.

Figure 4. SMPL results on our skeleton. Left: the SMPL gener-
ated mesh. Right: the skeleton we captured in Judo motion for
Character A. Due to the skeleton differences, e.g. different num-
ber of joints and different lengths of bones, severe distortion (both
hands and left foot) exists in the body shape.

Figure 5. Generation diversity. Judo motion sampled multiple
times, shown by different colors.
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

1.402/4.493 2.015/3.483 2.641/3.783 1.501/3.142 1.541/2.215
1.427/4.025 2.421/3.214 2.453/2.924 1.701/3.542 2.511/4.719
1.481/4.406 2.812/4.082 2.125/3.421 1.412/3.199 3.052/4.974
3.214/6.643 3.542/6.547 3.895/6.852 4.624/8.954 3.453/6.299

Eb

0.051/0.063 0.122/0.272 0.031/0.092 0.001/0.031 0.002/0.014
0.071/0.094 0.228/0.309 0.077/0.108 0.008/0.071 0.005/0.039
0.081/0.104 0.320/0.481 0.334/0.471 0.014/0.191 0.012/0.050
0.171/0.307 0.422/0.554 0.445/0.575 0.089/0.201 0.041/0.111

JPD

0.637 4.123 4.241 0.480 0.495
1.734 4.187 4.651 1.712 1.163
2.794 4.914 4.987 2.923 2.320
4.045 5.514 5.612 3.818 3.762

FID

0.283/0.806 5.849/6.246 2.421/3.841 0.305/0.512 0.424/0.952
0.310/0.884 5.244/6.121 2.451/3.874 0.540/0.917 0.878/1.562
0.711/0.976 6.018/6.924 3.084/4.312 0.749/1.034 0.912/2.134
1.874/1.854 6.684/7.896 4.548/4.845 1.342/1.837 1.027/2.307

Eb

0.112/0.389 0.398/1.662 0.248/0.745 0.003/0.064 0.006/0.020
0.162/0.401 0.407/1.823 0.425/0.945 0.008/0.118 0.015/0.041
0.227/0.454 0.487/2.132 0.504/1.003 0.031/0.216 0.022/0.056
0.421/0.645 0.722/2.972 0.924/1.781 0.135/0.421 0.037/0.129

JPD

1.510 5.204 4.312 1.613 0.624
1.601 5.405 4.894 1.819 1.273
2.718 5.827 5.181 3.003 2.024
4.248 5.922 6.247 4.252 3.941

Table 6. Comparison on Back-flip motion retargeting (top) and generation (bottom). XX/XX are on Character A/B. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

Figure 6. Large-scale extrapolation results. The skeleton of the red character is changed. The motion is Hold-body on scale 0.65 (top),
original scale (mid) and scale 1.3 (bottom).
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

1.691/3.948 2.371/4.434 3.013/3.212 1.926/4.337 1.621/3.871
3.802/8.071 3.427/8.724 3.412/8.894 4.016/9.711 2.054/8.354
3.914/9.221 3.624/9.217 4.642/10.945 5.174/10.915 2.752/8.544

5.544/10.221 4.052/9.826 4.952/10.954 5.204/11.065 2.453/9.061

Eb

0.049/0.134 0.159/0.316 0.031/0.140 0.001/0.033 0.003/0.009
0.108/0.227 0.207/0.375 0.099/0.204 0.004/0.091 0.012/0.022
0.172/0.271 0.271/0.405 0.123/0.306 0.017/0.194 0.022/0.036
0.211/0.294 0.301/0.534 0.325/0.452 0.036/0.205 0.031/0.101

JPD

0.956 3.569 3.356 0.737 0.495
0.917 3.453 3.541 1.571 1.163
2.127 4.485 3.941 2.584 2.320
2.354 4.755 4.842 2.948 3.762

FID

0.301/1.816 6.833/8.771 0.504/2.051 0.472/0.520 0.407/0.883
0.651/1.971 7.661/8.875 0.571/2.364 0.841/1.117 0.841/1.465
0.806/2.011 8.054/9.404 0.604/2.781 0.894/1.199 0.934/2.050
1.068/2.325 8.725/9.891 1.262/2.934 1.288/1.824 0.939/2.011

Eb

0.072/0.216 1.084/1.497 0.105/0.310 0.0017/0.0606 0.004/0.026
0.109/0.312 1.400/1.425 0.184/0.412 0.018/0.107 0.009/0.051
0.206/0.337 1.701/1.832 0.208/0.577 0.037/0.401 0.017/0.067
0.332/0.521 2.054/2.641 0.355/0.851 0.109/0.484 0.022/0.116

JPD
2.072 5.972 3.451 0.895 0.702
2.424 6.422 3.411 1.718 2.140
2.672 7.051 4.823 1.896 2.320
2.791 7.455 6.271 2.942 2.759

Table 7. Comparison on Big-ben motion retargeting (top) and generation (bottom). XX/XX are on Character A/B. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

1.256/4.045 1.853/3.997 2.645/4.241 2.736/4.360 0.953/3.591
1.864/4.689 2.907/5.084 2.756/5.601 2.862/5.336 1.638/4.610
2.362/4.898 3.015/5.915 3.808/6.032 2.991/5.617 1.937/4.841
2.623/5.185 3.530/6.240 4.810/6.937 3.244/6.054 2.223/5.719

Eb

0.088/0.105 0.141/0.353 0.286/0.422 0.144/0.216 0.002/0.010
0.582/0.698 0.164/0.391 0.231/0.488 0.189/0.271 0.009/0.033
0.612/0.706 0.200/0.446 0.409/0.521 0.217/0.595 0.017/0.063
0.620/0.705 0.220/0.450 0.426/0.554 0.237/0.607 0.031/0.175

JPD

3.557 3.792 5.451 5.670 0.402
3.804 3.984 5.669 6.265 0.964
4.602 4.205 6.324 6.618 1.534
5.552 5.434 6.729 6.887 2.341

FID

0.624/4.578 10.764/12.042 3.011/11.084 0.831/2.471 0.297/1.055
2.642/3.637 11.684/14.587 3.512/12.986 1.986/3.076 0.685/2.013
3.186/5.804 15.545/22.688 4.336/14.745 3.957/4.225 0.907/2.435
4.169/7.804 17.550/23.821 5.306/16.075 4.580/4.904 1.274/4.656

Eb

0.176/0.278 0.121/0.350 0.334/1.147 0.186/0.286 0.004/0.020
0.532/0.758 0.225/0.421 0.418/1.379 0.167/0.399 0.009/0.067
0.685/0.721 0.345/0.584 0.514/1.536 0.231/0.763 0.017/0.097
0.688/0.842 0.385/0.604 0.595/1.623 0.243/0.789 0.052/0.154

JPD

1.116 2.207 2.914 2.843 0.634
2.513 4.741 5.045 5.157 1.374
4.895 5.068 6.861 6.854 1.862
5.542 6.068 7.861 7.560 2.675

Table 8. Comparison on Noser retargeting (top) and generation (bottom). XX/XX are Character A/B results. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.
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Metric F-CNNs F-GCNs M-CNNs M-GCNs Ours

Er

0.754/4.548 1.696/4.302 0.857/4.241 1.733/4.346 0.735/3.733
0.930/5.288 1.957/4.553 1.263/4.914 1.869/4.866 1.328/4.542
1.513/5.585 2.013/4.9014 1.881/4.937 1.909/5.670 1.863/4.649
2.062/6.018 2.415/6.001 2.384/6.237 2.841/6.287 2.197/5.049

Eb

0.018/0.102 0.086/0.203 0.082/0.222 0.043/0.196 0.003/0.007
0.064/0.203 0.184/0.334 0.258/0.547 0.134/0.220 0.008/0.012
0.127/0.259 0.222/0.446 0.299/0.687 0.205/0.335 0.015/0.031
0.156/0.372 0.252/0.474 0.394/0.697 0.229/0.385 0.034/0.094

JPD

2.645 3.762 4.552 4.850 0.403
3.512 3.874 5.589 5.125 0.934
4.214 4.978 6.872 6.051 1.674
4.985 5.541 7.085 6.452 2.971

FID

0.587/2.584 6.542/7.255 3.214/6.211 0.610/2.714 0.384/0.884
1.524/3.450 7.225/8.254 3.5124/7.986 1.226/3.274 0.571/2.253
2.269/4.804 10.542/12.457 3.303/9.524 2.957/4.545 0.694/2.990
3.542/5.274 13.275/17.681 4.656/12.865 4.033/5.125 1.250/4.458

Eb

0.076/0.278 0.071/0.357 0.124/0.254 0.128/0.208 0.006/0.012
0.142/0.305 0.122/0.402 0.361/0.537 0.146/0.409 0.015/0.071
0.285/0.421 0.205/0.408 0.484/0.596 0.223/0.658 0.017/0.085
0.435/0.527 0.321/0.568 0.590/0.605 0.338/0.763 0.022/0.206

JPD

4.436 4.258 5.454 4.954 0.561
5.452 5.751 6.592 6.334 1.259
5.494 6.006 6.881 8.454 1.903
6.899 8.158 7.461 9.046 2.842

Table 9. Comparison on Chandelle retargeting (top) and generation (bottom). XX/XX are Character A/B results. All results are per joint
results. The four rows in each cell are results of Random, Cross-scale, Cross-interaction and Cross-scale-interaction respectively.

Training samples Er Eb JPD FID Eb JPD

M2
24 1.158 0.142 0.892 3.485 0.167 1.428
12 1.347 0.186 0.963 3.676 0.192 1.667
6 1.657 0.224 1.305 3.983 0.258 2.017

M7
24 5.861 0.082 3.035 1.897 0.094 3.923
12 6.025 0.104 3.879 1.957 0.123 4.343
6 6.254 0.173 4.241 2.124 0.205 4.587

Table 10. Result with limited training samples. Here is the result of Face-to-back (M2) and Big-ben (M7).

Layer index Output channels Dimension Layer Stride
Input / [32,T,n,4] / /

1 32 [32,T,n,32] ST-GCN 1
2 64 [32,T/2,n,64] ST-GCN 2
3 128 [32,T/4,n,128] ST-GCN 2
4 256 [32,T/8,n,256] ST-GCN 2
5 256 [32,T/8,n,256] ST-GCN 1
6 256 [32,1,n,256] Temporal Averaging /
7 262 [32,1,n,262] Concatenation with q̂0B and q̂TB /
8 256 [32,1,n,256] Dense

Table 11. Detailed architecture of ST-GCN1. T is the motion length. n is the number of joints.
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Layer Index Input Dimension Layer
1 Hidden state at time t [32,1,n,256] /
2 Bs, q̂0B , q̂TB ,and △q̄tB [32,1,n,10] Concatenation
3 output of 1, 2 [32,1,n,256] G-GRU
4 output of 3 [32, 1, n, 256] Dense
5 output of 4 [32, 1, n, 256] Dense
6 output of 5 [32,1,n,3] Dense

Table 12. Detailed architecture of G-GRU1. It takes as input z, q̂0B and q̂TB and outputs △q̄B . n is the number of joints.

Layer Index Output channels Dimension Layer Stride
Input / [32,T,n,3] / /

1 32 [32,T,n,32] ST-GCN 1
2 64 [32,T/2,n,64] ST-GCN 2
3 128 [32,T/4,n,128] ST-GCN 2
4 256 [32,T/8,n,256] ST-GCN 2
5 256 [32,T/8,n,256] ST-GCN 1
6 256 [32,1,n,256] Temporal Averaging /

Table 13. Detailed architecture of ST-GCN2. T is the motion length and n is the number of joints.

Layer Index Output channels Dimension Layer Stride
Input / [32,T,n,8] / /

1 16 [32,T,n,16] ST-GCN 1
2 16 [32,T/2,n,16] ST-GCN 2
3 16 [32,T/4,n,16] ST-GCN 2
4 16 [32,T/8,n,16] ST-GCN 2
5 16 [32,T/8,n,16] ST-GCN 1
6 16 [32,1,n,16] Temporal Averaging /

Table 14. Detailed architecture of ST-GCN3. T is the motion length and n is the number of joints.

Layer Index Output channels Dimension Layer Stride
Input 278 [32,1,n,278] Concatenation of outputs from the △qA and q′B branches, q̂0A and q̂TA /

1 256 [32,1,n,256] Dense /
2 256 [32,1,n,256] Dense /

Table 15. Detailed architecture after the ST-GCN2 and ST-GCN3. n is the number of joints. The network finally outputs z.

Layer Index Input Dimension Layer
1 Hidden state at time t [32,1,n,256] /
2 encoded q′B , q̂0A, q̂TA,and △q̄tA [32,1,n,10] Concatenation
3 output of 1, 2 [32,1,n,256] G-GRU
4 output of 3 [32, 1, n, 256] Dense
5 output of 4 [32, 1, n, 256] Dense
6 output of 5 [32,1,n,3] Dense

Table 16. Detailed architecture of G-GRU2. It takes as the first input z, encoded q′B , q̂0A and q̂TA and outputs △q̄A. n is the number of
joints.
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Index Output channels Feature Shape Operation Stride
Input / [32,n,3] / /

1 32 [32,n,32] Conv 1
2 64 [32,n/2,64] Conv and Maxpooling 1
3 128 [32,n/4,128] Conv and Maxpooling 1
4 256 [32,n/8,256] Conv and Maxpooling 1
5 260 [32,n/8,260] Concatenate Bs and q̂B /
6 256 [32,n/8,256] Dense /

Index Output channels Feature Shape Operation Stride
7 / [32,n/8,260] Concatenate Bs and q̂B /
8 256 [32,n/8,256] Dense /
9 256 [32,n/4,256] ConvTranspose 2

10 128 [32,n/2,128] ConvTranspose 2
11 32 [32,n,32] ConvTranspose 2

Output 3 [32,n,3] Dense /
Index Output channels Feature Shape Operation Stride
Input / [32,n,3] / /

1 32 [32,n,32] Conv 1
2 64 [32,n/2,64] Conv and Maxpooling 1
3 128 [32,n/4,128] Conv and Maxpooling 1
4 256 [32,n/8,256] Conv and Maxpooling 1
5 264 [32,n/8,264] Concatenate encoding q̂A and q′B 1
6 256 [32,n/8,256] Dense /

Index Output channels Feature Shape Operation Stride
7 / [32,n/8,264] Concatenate encoding q̂A and q′B /
8 256 [32,n/8,256] Dense /
9 128 [32,n/4,128] ConvTranspose 2

10 64 [32,n/2,64] ConvTranspose 2
11 32 [32,n,32] ConvTranspose 2

Output 3 [32,n,3] Dense /

Table 17. F-CNNs detailed architecture in Character B (top) and Character A (bottom)
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Index Output channels Feature Shape Operation Stride
Input / [32,n,3] / /

1 32 [32,n,32] GCN 1
2 64 [32,n,64] GCN 1
3 84 [32,n,84] Concatenate encoding Bs and q̂B 1
4 128 [32,n,128] GCN 1
5 256 [32,n,256] GCN 1

Index Output channels Feature Shape Operation Stride
6 / [32,n,276] Concatenate encoding Bs and q̂B /
7 256 [32,n,256] GCN 1
8 128 [32,n,128] GCN 1
9 64 [32,n,64] GCN 1

10 32 [32,n,32] GCN 1
11 3 [32,n,3] GCN 1

Output 3 [32,n,3] Dense 1
Index Output channels Feature Shape Operation Stride
Input / [32,n,3] / /

1 32 [32,n,32] GCN 1
2 64 [32,n,64] GCN 1
3 80 [32,n,80] Concatenate encoding q′B and q̂A 1
4 128 [32,n,128] GCN 1
5 256 [32,n,256] GCN 1

Index Output channels Feature Shape Operation Stride
6 / [32,n,272] Concatenate encoding q′B and q̂A /
7 256 [32,n,256] GCN 1
8 128 [32,n,128] GCN 1
9 64 [32,n,64] GCN 1

10 32 [32,n,32] GCN 1
11 3 [32,n,3] GCN 1

Output 3 [32,n,3] Dense /

Table 18. F-GCNs detailed architecture in Character B (top) and Character A (bottom)
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Index Output channels Feature Shape Operation Stride
Input / [32,T,n,4] / /

1 16 [32,T,n,16] Conv and Maxpooling 1
2 32 [32,T,n,32] Conv and Maxpooling 1
3 64 [32,T,n,64] Conv and Maxpooling 1

Index Output channels Feature Shape Operation Stride
4 / [32,T,n,65] Concatenate Bs /
5 64 [32,T,n,64] Dense /
6 32 [32,T,n,32] ConvTranspose 1
7 16 [32,T,n,16] ConvTranspose 1

Output 3 [32,T,n,3] ConvTranspose 1
Output 3 [32,T,n,3] Dense /
Index Output channels Feature Shape Operation Stride
Input / [32,T,n,16] Concatenate encoding q̂A and q′B /

1 32 [32,T,n,32] Conv and Maxpooling 1
2 64 [32,T,n,64] Conv and Maxpooling 1

Index Output channels Feature Shape Operation Stride
3 / [32,T,n,72] Concatenate encoding q̂A and q′B /
4 64 [32,T,n,64] Dense /
5 32 [32,T,n,32] ConvTranspose 1
6 16 [32,T,n,16] ConvTranspose 1

Output 3 [32,T,n,3] Dense /

Table 19. M-CNNs detailed architecture in Character B (top) and Character A (bottom)
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Index Output channels Feature Shape Operation Stride
Input / [32,T,n,4] / /

1 32 [32,T,n,32] ST-GCN 1
2 64 [32,T,n,64] ST-GCN 1
3 128 [32,T,n,128] ST-GCN 1
4 128 [32,T,n,128] Dense 1

Index Output channels Feature Shape Operation Stride
5 / [32,T,n,129] Concatenate Bs /
6 128 [32,T,n,128] ST-GCN 1
7 64 [32,T,n,64] ST-GCN 1
8 32 [32,T,n,32] ST-GCN 1
9 16 [32,T,n,16] ST-GCN 1

Output 3 [32,T,n,3] ST-GCN 1
Index Output channels Feature Shape Operation Stride
Input / [32,T,n,3] / /

1 32 [32,T,n,32] ST-GCN 1
2 64 [32,T,n,64] ST-GCN 1
3 128 [32,T,n,128] ST-GCN 1
4 144 [32,T,n,144] Concatenate encoding q′B 1
5 128 [32,T,n,128] Dense 1

Index Output channels Feature Shape Operation Stride
6 / [32,T,n,144] Concatenate encoding q′B /
7 128 [32,T,n,128] ST-GCN 1
8 64 [32,T,n,64] ST-GCN 1
9 32 [32,T,n,32] ST-GCN 1

Output 3 [32,T,n,3] Dense /

Table 20. M-GCNs detailed architecture in Character B (top) and Character A (bottom)
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