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Abstract 

Evaluation of potential risks of musculoskeletal disorders in real workstations is challenging as the environment 
is cluttered, which makes it difficult to correctly and accurately assess the pose of a worker. Being marker-free 
and calibration-free, Microsoft Kinect is a promising device to assess these poses, but it can deliver unreliable 
poses especially when occlusions occur. To overcome this problem, we propose to detect badly recognized body 
parts and to replace them by an appropriate combination of example poses gathered in a pre-recorded pose. The 
main contribution of this work is to organize the database as a filtered pose graph structure that enables the 
system to select relevant candidates for the combination: candidates that ensure continuity with the previous pose 
and similarity with the available reliable information. We applied the proposed method in a realistic environment 
that involved sub-optimal Kinect placement and several types of occlusions. An optoelectronic motion capture 
system was concurrently used to obtain ground truth joint angles. In an ergonomics context, we also computed 
Rapid Upper Limb Assessment RULA scores. This kind of ergonomics tool requires to rate the pose of the 
worker based on an estimation of the joint angles. These latter are then used to provide a global risk score. 
Results showed that when occlusions occur, the inaccurate raw Kinect data could be significantly improved 
using our correction method, leading to acceptable joint angles. As RULA calculation is based on angular 
thresholds, which tends to minimize the effect of joint angle errors, when these error values are not close to 
thresholds. However, for realistic scenarios with occlusions that lead to very large joint angle errors, the 
correction method also provided significantly better RULA scores. Our method opens new perspectives to define 
new fatigue or solicitation indexes based on continuous measurement contrary to classical static images used in 
ergonomics. As the computation time is very low, it also enables real-time feedback and interaction with the 
operator. 
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1. Introduction 

Microsoft Kinect is nowadays widely used to 
measure performance of a user in various 
application domains. Initially designed for video 
games, such a low-cost and easy-to-use motion 
capture device has been applied in clinical gait 
analysis (Auvinet et al. 2012; Auvinet et al. 2014; 
Galna et al. 2014), human-computer interactions 
(Wang et al. 2013), sign-language analysis 
(Gameiro et al. 2014; Pedersoli et al. 2014), sport 
training (Cassola et al. 2014) and ergonomics 
(Diego-Mas and Alcaide-Marzal 2014; Vignais et 
al. 2013). In ergonomics, posture and movement of 

the worker are important information for 
determining the risk of musculoskeletal injury in 
the workplace (Vieira and Kumar 2004). 
Consequently, several works have proposed 
assessment grids based on body posture, such as the 
famous RULA grid (McAtamney and Corlett 
1993). This kind of ergonomics tool requires to rate 
the pose of the worker based on an estimation of the 
joint angles. These latter are then used to provide a 
global risk score. Recent works in ergonomics 
(Vignais et al. 2013) have demonstrated that real-
time ergonomic feedback through Head Mounted 
Display positively influences the motion of workers 
decreasing locally hazardous RULA values. 
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However, the method was based on inertial sensors 
and feedback devices that can change the way 
people perform the motion. Optical motion capture 
systems require positioning sensors or markers on 
the body and calibrating the system and the 
skeleton, which is not always possible in real work 
conditions. Indeed, sensors can be incompatible 
with security constraints and can also be perturbed 
by electromagnetic environment. These motion 
capture problems are also encountered in other 
application domain such as sports, training or 
rehabilitation. 
Recent papers evaluated the accuracy of the Kinect 
skeleton data mostly for very simple motions and in 
accordance with the Kinect recommendation 
(sensor placed in front of the subject) (Clark et al. 
2012; Kurillo et al. 2013; Bonnechère et al. 2014). 
It has been shown that this error rapidly increases 
for complex motions with auto-occlusions and 
when the sensor is not placed in the recommended 
position (Plantard et al. 2015).  
Several methods have been proposed to correct 
baldy reconstructed poses provided by the Kinect. 
Since human motion is highly non-linear, learning 
statistical dynamic models (based on database of 
examples) as a motion prior can produce higher 
quality movements (Chai et al. 2007). Applying 
these methods to reconstruct Kinect poses has a 
major drawback as each body joint position is 
assumed to be accurately reconstructed whereas 
Kinect data deliver noisy or even incorrect 
information. To overcome this limitation, recent 
works have proposed to take the reliability of the 
Kinect data into account in the correction process. 
Reliability can then be integrated into a lazy 
learning framework to reconstruct a more reliable 
pose (Shum et al. 2013, Liu et al. 2014). 
However, these methods have not been adapted and 
tested in constrained conditions, with many 
occlusions and poor sensor placement. In this 
paper, we propose a new method inspired by this 
example-based correction approach by introducing 
a new motion data structure to model the database 
of examples. The resulting structure, named 
Filtered Pose Graph, enables us to efficiently 
preselect a relevant subset of poses before 
correction, ensuring continuity and maximizing 
reliability even when important occlusions occur. 
This enhances both computation speed and 
reconstruction quality of the system. 
The main contributions of the paper are: 

 a method to correct Kinect data and to 
compute RULA scores, 

 an evaluation of the actual usability of this 
method in constrained environments, in an 
ergonomic perspective. 

The paper is organized as follows. The method used 
in this paper to improve the quality of Kinect data is 
presented in section 2. The computation of the 
RULA grid and the protocol used for the reliability 

evaluation of our method are given in section 3. 
Results about the joint angles evaluation and the 
RULA score estimation in constrained 
environments is given in section 4, and discussed in 
section 5. 

2. Correction framework 

The correction method improves the quality of 
Kinect data thanks to an example-based approach. 
The correction framework is composed of an offline 
and an online process as shown in Figure 1. The 
offline and the online part are described in the sub 
section 2.1 and 2.2 respectively. 
 

 

Figure 1: Overview of the pose correction method 
inspired by Shum et al. (2013). Offline database 
preprocessing: a) Posture database to b) Filtered Graph 
representation. Online pose correction: a) Reliability 
estimation, b) pose optimization and c) Physical filtering. 

2.1. Offline  

The offline process organizes the database of poses 
extracted from motion capture clips to produce a 
so-called Filtered Pose Graph (a and b in the offline 
part in Figure 1). The Filtered Pose Graph is a 
graph in which nodes are individual poses and 
edges are potential links between the two poses if 
they could be connected without discontinuities (i.e. 
distance between poses is below a given threshold). 
The graph is filtered to eliminate redundant poses 
and avoid creating an too-dense graph with 
numerous edges and nodes. The resulting graph 
enables us to rapidly select poses that are close to a 
given current pose, which could be considered as 
potential next poses in the studied motion. Hence, 
in the online correction phase, the idea is to rapidly 
gather this set of pose examples that could help to 
correct badly reconstructed body parts. 

2.2. Online  

The online correction process involves three steps. 
It first estimates the reliability of each joint center 
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reconstructed by the Kinect (Figure 1.a). Then, 
based on the reliable information delivered by the 
Kinect, it selects the potential nodes (i.e. pose 
examples) in the Filtered Pose Graph that can help 
to correct unreliable joint positions. The resulting 
pose examples are combined using an optimization 
process to replace unreliable information by 
plausible combined one while preserving continuity 
and similarity to the reliable information (Figure 
1.b). Finally, a physical model is used to filter the 
resulted pose and avoid jerky motions (Figure 1.c). 
For the first step, reliability of Kinect joint is 
computed with the method described in (Shum et 
al. 2013) which provides a reliable value between 0 
and 1 for each joint.  
In the second step, the unreliable part of the Kinect 
pose is corrected using a local optimization process. 
Firstly, the method selects the pose candidates that 
are relevant with respect to the reliable Kinect 
information in the Filtered Pose Graph. The Filtered 
Pose Graph allowed us to use large database while 
maintaining good real time performance during this 
online candidate selection. Moreover, selecting 
poses connected to the current one helps us to 
consider only candidates that ensures continuity 
with the current pose, while unorganized databases 
cannot guarantee continuity. 
Then, a combined pose is obtained by minimizing a 
set of energy functions in an optimisation process. 
More precisely, optimization aims at finding the 
most appropriate weights used to linearly combine 
a set of pose candidates while minimizing a set of 
constraints modelled as energy terms: 1) 
Minimizing the difference between the optimizing 
pose and the observed Kinect pose for the joints 
considered as reliable. 2) The style term minimizes 
the difference between the optimizing pose and the 
selected pose in the Filtered Pose Graph. 3) 
Avoiding changes in bone length when combining 
various joint centers positions. 4) Ensuring 
continuity to minimize high frequency jittery 
movements.  
The optimization score is evaluated as a weighted 
sum of the energy terms. The optimization process 
continues until an optimal solution is found, or the 
number of iterations reaches a predefined limit. 
In the last step we filter the optimized joint 
positions using a dynamic model to accurately 
maintain kinematics features such as segment 
lengths. Readers are referred to Shum et al. (2013) 
for more details. 

3. Material and methods 

This section describes the method and experimental 
protocol used to evaluate the method introduced 
above in ergonomic context.  

3.1. Computation of the RULA grid 

3.1.1 Introduction to RULA grid 
 

In ergonomics, one of the most popular 
observational method is the Rapid Upper Limb 
Assessment (RULA) (McAtamney and Corlett 
1993). This tool requires to rate the pose of the 
worker based on an estimation of the upper-body 
joint angles. Each joint angle is associated with a 
joint score according to predefined range of angles. 
For example, the upper arm score ranges from 1 to 
4 if the shoulder flexion is within [-20; +20], < -20 
or within [20; 45], within [45; 90], or >90 
respectively. The same type of threshold are applied 
to the other upper-body joints angles. This approach 
leads to a discretization of the score that may be 
less sensitive to noise than methods that are based 
on continuous scores. One has to notice that 
additional conditions can increase the local body 
part scores, such as when the shoulder is raised or 
the upper arm is abducted. 
These scores are combined to provide a global risk 
score for the left and right body parts, ranging from 
1 (posture is acceptable) to 7 (workstation requires 
investigation and changes immediately). 
 
3.1.2 Computation of joint angles using the Kinect 
data 
 
To use the RULA method, relevant joint angles 
have to be computed based on the Kinect skeleton 
data (see Figure 2). A Kinect pose is defined as 
݌ ൌ 	 ൛ݔ௝, ,௝ݕ  ௝ൟ௝ୀଵ..ே where N stands for the numberݖ

of joints in the pose, and ݔ௝, ,௝ݕ  ௝ stand for the 3Dݖ
Cartesian coordinates of the ݆௧௛ joint. According to 
the estimated joint positions, joint angles should be 
computed using the ISB recommendation (Wu et al. 
2002, Wu et al. 2005). However, the Kinect 
skeleton is not fully compatible with this 
recommendation as it does not provide all the 
required anatomical landmarks.  
We consequently slightly adapted the joint angle 
definition to take the available Kinect joints (maned 
with letters in Figure 2 a)) into account. 
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Figure 2: a) Skeleton model provided by the Kinect and 
the correction method. (a) hip center, (b) spine, (c) 
shoulder center, (d) head, (e) left and (i) right shoulders, 
(f) left and (j) right elbows, (g) left and (k) right wrists, 
(h) left and (l) right hands, (m) left and (n) right hips. b) 
Body part coordinates (pelvic, trunk and shoulder). X-
axis in red pointing forward, Y-axis in green pointing 
upward and Z-axis in blue pointing to the right. 

The pelvis coordinate is define relatively to the 
recommendation (Wu and al. 2002). Y-axis is along 
the trunk axes represented by the vector from the 
hip center (a) to the spine (b). The X-axis is defined 
as the normal of the plan formed by the Y-axis, the 
left (m) and the right (n) hips. Finally the Z-axis is 
computed as the normal of the X-axis and Y-axis. 
For the trunk coordinate system, the Y-axis is 
represented by the vector from the spine joint (b) to 
the shoulder center joint (c). The X-axis is defined 
as the normal of the plan formed by the Y-axis, the 
left (e) and the right (i) shoulders. Finally the Z-axis 
is computed as the normal of the X-axis and Y-axis.  
The shoulder coordinate system is defined 
according to the ISB recommendation. The Y-axis 
is given by the vector from elbow joint (f or j) to 
shoulder joint (e or i). The Z-axis is the normal of 
the plan formed by the Y-axis and the lower arm 
defined from wrist joint (g or k) to elbow joint (f or 
j). The X-axis is the normal of the plane formed by 
the two previous axis. 
These three coordinate systems were placed to the 
hip center (a), shoulder center (c) and shoulder 
joints (e or i) respectively, as depicted in Figure 2 
b).  
The trunk and shoulder joint angles were then 
computed according to the ISB recommendation. 
We changed the matrix decomposition sequences of 
the shoulder joint angle computation from YXY to 
ZXY, to obtain abduction values and to limit 
gimbal lock problems as suggested in (Senk and 
Chèze 2006).  
The Kinect skeleton also does not provide enough 
points to compute the neck and elbow local 
coordinate systems. We alternatively computed the 
elbow joint angles using the vector convention 
detailed by (Bonnechère et al. 2014).  
The neck joint angles were computed by planar 
projection of the neck vector (c to d) expressed into 
the local trunk coordinate system.  
As there is not enough available information to 
compute the wrist angles, the wrist, and wrist twist 
RULA scores are set manually. Finally, all the 
threshold values that are not provided by the RULA 
method are set to 20°, such as (Aptel et al. 2000) 
for the shoulder joint abduction. 

3.2. Experimental set-up 

In this section, we present the experimental 
protocol used to evaluate the relevance of the 
proposed method in constrained conditions, such as 
work conditions. To this end, we carried-out an 

experimental protocol with 12 male participants 
(age: 30.1±7.0 years, height: 1.75±0.046 m, mass: 
62.2±7 kg). They were equipped with 47 reflective 
markers positioned at standardized anatomical 
landmarks, as suggested in (Wu et al. 2005). The 
motion of the participants was recorded by both 
Microsoft Kinect 2 sensor and 15 cameras Vicon 
optical motion capture system.  
The subject had to perform getting and putting 
motions. More precisely, the subject had to carry a 
40 cm per 30 cm per 17 cm box with the two hands, 
place it in front of the abdomen, wait few seconds 
and put it back to the original position. The box 
(attached to a magnet) had two target placements, in 
order to generate two different motions. The first 
placement named F (i.e. Front) the target was 
located in front of the subject, at 1.70 m high, 0.35 
m left and 0.50 m in front. In the second placement 
S (i.e. Side) the target was located on the left of the 
subject, aligned with the two shoulders at the same 
height and 0.55m left. 
To simulate workplace environmental constraints, 
three experimental setups were defined, including 
manipulation box (to add occlusions during the 
manipulation task) and various Kinect placements: 

- [NB – No Box condition]: the 
manipulation of the box was simulated by 
the subject without using actually a box to 
avoid occlusions. The Kinect was placed 
in front of the subjects, as recommended 
by Microsoft. It enabled us to test the 
robustness of the Kinect sensor under 
favourable conditions. In this condition, 
the subject simply reached to the position 
of the attachment where the box would 
usually be located. 

- [B – Box]: the manipulation is actually 
preformed with the box to created 
occlusions of parts of the body, as in real 
working situation. The Kinect was again 
placed in front of the subject, as 
recommended by Microsoft.  

- [B45 – Box and 45° sensor placement] As 
in the B condition the subject actually 
manipulated the box but the Kinect was 
placed 45° left forward of the subject, as in 
real cluttered environments. In this 
condition, occlusion was more important. 

The subject repeated each gesture 5 times: getting, 
and putting, for each conditions and box placement 
(FNB, FB45, FB, SNB, SB45 and SB): 5 × 3 × 2 = 30 
motions were recorded for each subject.  
In this experimentation, the correction was 
performed using a Filtered Motion Graph made-up 
with 130 professional example gestures leading to 
532,624 poses. The poses were then filtered into 
2,048 nodes with an average of almost 7.81 links 
per node. The filtration intensity was chosen 
relative to the optimal condition used in (Shum et 
al. 2013). 
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4. Results 

Firstly, we evaluated the accuracy of the joint 
angles measured with raw Kinect data or corrected 
ones, as these angles were used in RULA. To this 
end, we computed the root mean square error 
(RMSE) between the joint angles measured with 
the reference Vicon motion capture system, and 
those computed with the raw and corrected Kinect 
data, as described in section 3.1.2. This RMSE has 
been applied to the 8 main angles used in the 
RULA score: αT, γT, for the torso, αLS/RS, βLS/RS for 
the left/right shoulders, and αLE/RE for the left/right 
elbow flexion. Table 1 reports the joint angles 
ranges for all the joint angles and all the conditions, 
obtained with reference Vicon data.  

Table 1: Joint angle ranges for the 6 scenarios in degree. 

 FNB FB45 FB SNB SB45 SB 
αT 11.4 12.6 13.2 7.4 5.8 6.1 
γT 19.2 19.0 18.2 33.0 29.0 29.4 

αLS 130.8 104.6 108.6 111.5 93.5 90.9 

βLS 47.1 37.7 38.7 57.0 56.8 55.0 

αLE 76.8 67.9 67.4 85.9 71.9 74.5 

αRS 125.4 99.3 99.5 111.9 83.8 85.8 

βRS 30.7 25.1 24.3 38.7 36.8 35.8 

αRE 73.9 69.0 68.4 83.1 73.9 75.5 

 
One can see that some angles exhibit very low 
ranges, such as the trunk flexion αT, whereas other 
vary in a wider range, such as the shoulder flexion 
αLS. Consequently, displaying RMSE in a unique 
figure for all the joint angles may be difficult to 
analyse. Thus, to have a synthetic view of all the 
results in a unique figure, we normalized the RMSE 
by the range of angles reported in Table 1: 

௜ሻߠሺܧܵܯܴ݊ ൌ 	
௜ሻߠሺܧܵܯܴ

maxሺߠ௜ሻ െ minሺߠ௜ሻ
 

The resulting synthetic figure is given in Figure 3 
for the 8 main angles (one star diagram per type of 
trial). The results exhibit the nRMSE between 0 (no 
error) to 1 (error corresponding to the range of 
motion). It is displayed for the 6 studied conditions. 
Kolmogorov-Smirnov test was used to check the 
normality of the distribution of the nRMSE for this 
analysis. The distributions did not follow a normal 
law. A Wilcoxon signed rank test was used for 
detect significant differences between Kinect error 
and corrected error for all the subject in each 
condition. 
In this Figure, no-occlusion scenarios (FNB and SNB) 
exhibit lower errors compared to those involving 
partial occlusion (FB45, SB45, FB and SB). In no-
occlusion scenarios, correction of Kinect data did 
not significantly decrease this error. On the 
opposite, when occlusions occurred, corrected 
Kinect data leads to significantly (p < 0.001) better 

estimation of joint angles compared to reference 
Vicon data.  
For scenario FB (displacing a box), nRMSE 
reached higher values than 1 for two torso angles: 
αT and γT. This is mainly due to the fact that the 
joint angles varied in small ranges while occlusions 
due to the box leaded to high errors when using a 
Kinect placed in front. 
 

 
 
Figure 3: Normalized RMSE between reference 
angles using the Vicon data and using both raw 
Kinect (in red) and corrected Kinect (in green), for 
the 6 situations. 
 
Secondly, based on the joint angles computed with 
the raw and corrected Kinect data, we computed the 
corresponding RULA score, as described in section 
3.1. In the same way, we computed the RMSE 
between the RULA score computed using the 
reference Vicon data and the two Kinect ones. Let 
us recall here that the RULA score ranges from 1 to 
7 only for each body side. The results are reported 
in Table 2. Significant difference between the 
RMSE is noticed with *, **, and *** for p < 0.05, p 
< 0.01 and p < 0.001 respectively. 

Table 2: RMSE between the reference RULA score 
computed with Vicon data compared to using direct or 
corrected Kinect measurements. Significance between the 
two performances is given by *** for p < 0:001. 

 RULA Left RULA Right 

Motio
n 

Kinec
t 

Correc
t 

p Kinect Correc
t 

p 

FNB 0.49 0.50 NS 0.45 0.41 * 
FB45 0.66 0.65 NS 0.66 0.55 **

* 
FB 1.30 0.63 ** 1.40 0.49 **
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* * 
SNB 0.55 0.63 * 0.65 0.62 ** 
SB45 0.59 0.60 NS 0.62 0.45 **

* 
SB 0.51 0.51 NS 0.42 0.36 ** 

 
In this table, one can see that the average error is 
below 1 for most of the scenarios, except FB where 
occlusions with the box occurred. For scenarios 
with occlusions, frequently observed in real 
workstations, the correction method provides 
significantly better angles and RULA scores.  
As RULA is based on angular thresholds, it tends to 
minimize the effect of noise when the angle is far 
from the thresholds. Hence, it leads to more 
acceptable errors than simply looking at the joint 
angles. However, in a multimedia interface 
delivering real-time feedback to a user about his 
RULA performance, this could be a problem. 
Indeed, if the user can visualize an avatar with a 
badly reconstructed pose, different from his actual 
performance, he may not be able to understand and 
adapt his performance to decrease the RULA score. 
In this type of real-time feedback system (Vignais 
et al. 2013), the coherence between the user's 
motion, the avatar pose and the RULA score is very 
important. In most of no-occlusion scenarios we 
could expect to have acceptable results. This 
statement could be confirmed by carrying-out 
perceptual studies.  

Table 3: Percentage of correctly computed RULA score 
for the left and right body parts, using the direct Kinect 
measurement or the corrected one. Significance between 
the two performances is given by *** for p < 0.001 

 RULA Left RULA Right 
Motion Kinect Correct p Kinect Correct p 

FNB 77 75 NS 80 82 * 

FB45 71 69 NS 62 75 *** 

FB 52 69 *** 55 79 *** 

SNB 76 71 NS 76 78 ** 

SB45 74 71 NS 64 80 *** 

SB 78 77 NS 82 86 ** 

 
RMSE is based on averaged errors and it could be 
interesting to also analyse the performance of the 
Kinect correction to correctly compute the RULA 
score. To this end, Table 3 reports the percentage of 
correctly computed RULA scores (zero difference 
between the Vicon-based score and the Kinect-
based scores) in all the conditions. For RULA 
scores based on raw Kinect data, this percentage is 
between 51% (most occluded condition) and 82% 
(few occlusions condition). In the worst case, with 
many occlusions, this percentage significantly 
raised from 52% (resp. 55%) to 69% (resp. 79%) 
for the left (resp. right) upper-limb. 

The above analyses have been carried-out with the 
6 controlled laboratory conditions. However, in real 

workstations the occlusion and camera placement 
may be much more important. Indeed, the sensor 
placement is highly constrained by the environment 
and many occlusions may occur, due to the objects 
which are manipulated. Consequently, as a proof of 
concept, we applied our method to two simulated 
workstations scenarios, involving the manipulation 
of a real car seat, as depicted in the Figure 4. 

 
Figure 4: The two simulated workstations scenarios. (left) 
lightly occluded scenario. (right), heavily occluded 
scenario. 

As shown in the Figure 4, the camera was not 
placed in the position recommended by Microsoft. 
The first scenario involved light occlusion, whereas 
heavy occlusion occurred in the second one. The 
Vicon system was also placed in the environment to 
measure reference data, as for the previous 
controlled conditions. 

 

Figure 5: Histogram showing the percentage of frames 
for which the RULA score error is 0, 1...5 when using 
raw (red) and corrected (green) Kinect data. Two realistic 
scenarios are studied: a) simple one with few occlusions, 
b) complex one with many occlusions. 

Figure 5 depicts the histogram of the RULA score 
errors when using raw and corrected Kinect data: 
the percentage of images where the error was equal 
to 0, 1, 2, 3, 4 and 5. These results show that almost 
all the errors greater than 1 disappeared when using 
the corrected data instead of raw Kinect data. As 
expected, the second scenario with many occlusions 
(Figure 5.b) exhibits lower occurrence of 0-error 
images compared to the first scenario (Figure 5.a). 
However, correction of Kinect data enabled us to 
eliminate almost all the errors greater than 1, while 
it corresponded to almost 20% of the cases without 
correction. 

To summarize, results reported in this paper are 
promising for the ergonomic evaluation of 
workstations in real environments, using standard 
measurement methods. The current framework 
shows a practical capacity to correctly provide 
ergonomics evluation for working tasks with a 
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cheap and easy-to-use system. Figure 6 depicts an 
example of potiential application based on our 
framework, where joint angles and resulting RULA 
score are given to the ergonomists. The user can 
visualize the video, the 3D character, joint angles, 
and RULA scores for each frame of the recording, 
at 30Hz. It provides supplementary temporal 
information, such as the time spent above a given 
RULA score.  

 

Figure 6: Example of ergonomics application based on 
our Kinect data correction framework. 

5. Discussion 

The results showed correction of Kinect data 
allowed us a significant improvement of the joint 
angle accuracy, particularly when the body was 
partially occluded. RULA score was more reliable 
with corrected data, although angular thresholds 
tended to minimize the effect of noise when using 
Kinect raw data. 
The skeleton delivered by the Kinect did not 
contain all the required information to compute all 
the joint angles as accurately as using Vicon data 
with ISB recommendations. Particularly, Kinect 
delivered very noisy and unreliable information 
about the hand. Hand configuration is a key point in 
ergonomics, as reported in the RULA assessment 
scores. As it is not correctly measured by the Kinect 
most of the time, further research would be 
necessary to address this particular point. Hence, 
motion involving dexterous manipulation and fine 
motion of the wrist cannot be studied with such a 
system. The method used for correction involves 
that a minimum set of reliable information is 
delivered by the Kinect, which is not guaranteed for 
the wrist in Kinect v1 and v2.  
Another limitation of the method is the use of a 
database that may not correspond to the actual use 
of the system. In this paper, we used a database 
trained with working motions, similar to those 
performed by the subject. For other type of 
motions, involving poses that have never been 
recorded before, especially for larger ranges of 
motions, the performance of the correction method 
would not be so good.  
The method is also based on a set of parameters, 
such as the number of candidates used to run the 
optimization, or the thresholds applied to prune the 

database and eliminate redundant information. It 
would be interesting to evaluate the actual impact 
of these parameters on the performance of the 
correction method.  
Despite the reported limitations, the results of the 
current study are promising for the ergonomic 
evaluation of workstations. Kinect has already been 
considered as a promising tool to evaluate 
ergonomics on-site (Diego-Mas et al. 2014; Patrizi 
et al. 2015), but only with very simple and 
inaccurate posture representation. This study shows 
the applicability of our framework for a wider use 
and global evaluation tool. Using such automatic 
system enables to deliver a score at each frame 
(30Hz with a Kinect), which is an improvement 
compared to traditional methods based on few key 
frames. Indeed it could provide the amount of time 
spent above a given score as an additional 
information for the ergonomist.  

6. Conclusion 

This paper presents an evaluation of the quality of 
angular and RULA score values when using a 
Kinect with software correction. The result showed 
that both corrected and uncorrected Kinect data 
enabled to compute acceptable to reliable angular 
and RULA score data in occlusion-free conditions. 
However, in more challenging environments with 
occlusions, kinematic data provided by the Kinect 
was more noisy, leading to inaccurate estimation of 
the joint angles. The proposed correction 
framework enables us to consider encumbered 
capture area (e.g. production chain) that leads to 
such occlusions or bad sensor placements. 
Uncorrected Kinect data exhibited much higher 
errors than corrected ones, which may lead to 
difficulties when using the system in real working 
environments.  

Finally, one has to notice that correction runs in real 
time and allows the possibility to implement real-
time user feedback, with potential application in 
training or virtual prototyping, as suggested by 
(Vignais et al. 2013).  
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