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Figure 1: Physics-based motion tracking of two humanoid characters performing contact-rich interactions such as boxing, pushing, and
grappling. The objective is to track and reproduce stable motions under frequent physical contacts and complex force exchanges.

Abstract
Motion tracking has been an important technique for imitating human-like movement from large-scale datasets in physics-based
motion synthesis. However, existing approaches focus on tracking either single character or a particular type of interaction,
limiting their ability to handle contact-rich interactions. Extending single-character tracking approaches suffers from the in-
stability due to the challenge of forces transferred through contacts. Contact-rich interactions requires levels of control, which
places much greater demands on model capacity. To this end, we propose a robust tracking method based on progressive neural
network (PNN) where multiple experts are specialized in learning skills of various difficulties. Our method learns to assign
training samples to experts automatically without requiring manually scheduling. Both qualitative and quantitative results
show that our method delivers more stable motion tracking in densely interactive movements while enabling more efficient
model training.

Keywords: animation system, physical simulation, motion tracking

CCS Concepts
• Computing methodologies → Physical simulation; Motion capture; Motion processing;

1. Introduction

Physics-based motion tracking enables the synthesis of physically
valid movements by using the next-frame pose as a control signal.
Despite extensive research, existing approaches focus exclusively
on either single-character motion tracking [PALV18; LCKX*23],
or a particular type of interactions with a task-specific controller

† Corresponding author

[WGH21; ZZLH23; LWL*24], limiting their ability to handle
contact-rich interactions.

Extending single-character motion tracking methods to inter-
action settings faces a fundamental challenge: preserving stabil-
ity while transferring forces through contacts. In physical simula-
tion, identical poses may have different underlying contact forces
that may vary significantly. When characters are controlled inde-
pendently by single-character tracking methods without modeling
force transfer, contact-rich interactions become unstable and may
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even fail to track, as one character may receive inconsistent and un-
controlled forces from its opponent. For example, different poses
in highfive have different distributions of contact forces between
hands. Single-character tracking is unable to handle this since it
does not take potential transferred forces into account. When sud-
den forces are transmitted through contacts, they can lead to oscil-
lations or unmeaningful movements.

Since contact-rich interactions like boxing or dancing intro-
duce physical perturbations, another challenge of this task is that
they places much greater demands on model capacity. This added
complexity significantly increases the risk of catastrophic for-
getting in tracking network [LCKX*23]. Prior work on physics-
based humanoid interactions [ZZLH23; WGH21; LWL*24] usu-
ally addresses this by restricting the problem scope: training skill-
specific policies [WGH21; PALV18], adopting multi-stage learn-
ing paradigms [ZZLH23], or focusing on sparse and long-range
interactions [LWL*24]. However, these strategies either incur high
training costs or compromise performance on the dense, contact-
rich interaction details.

To overcome these challenges, we propose a progressive, all-in-
one mixture-of-experts architecture. Intuitively, interactions natu-
rally involve different levels of control complexity. For example,
in boxing, low-level control maintains stable locomotion such as
stance and stepping, while mid-level to high-level control gov-
erns reactive behaviors such as dodging and blocking. These con-
trols operate hierarchically, with higher-level strategies relying on
the stability of low-level control. Building on this intuition, our
method eliminates the need for multi-stage skill-specific training
[LCKX*23; PALV18] by introducing a progressive mixture-of-
experts design, enabling a single policy for contact-rich interac-
tions.

Specifically, we introduce a progressive training strategy for the
mixture-of-experts architecture, drawing inspiration from the pro-
gressive neural network (PNN) framework [RRD*16]. This strat-
egy addresses the instability in robot states caused by dense con-
tacts in contact-rich interactions. By routing samples based on
tracking error, the system automatically assigns contact-free, high-
reward, stable samples to base experts and contact-heavy, low-
reward, unstable samples (where force transfer occurs and is chal-
lenging to track) to specialized experts. In contrast to the origi-
nal PNN where expert policies are manually assigned to distinct
datasets or tasks, our approach removes the need for such prede-
fined partitioning. By training directly on the entire motion dataset,
the framework autonomously allocates samples of varying diffi-
culty to the most appropriate experts.

We demonstrate our method on InterHuman [LZL*24], achiev-
ing robust tracking accuracy and smooth transfer across different
interaction patterns. We also validate the stability of our approach
under perturbations introduced via obstacles or next-frame poses.
Finally, we analyze the contributions of individual experts, high-
lighting the model’s ability to capture different levels of torque con-
trol. Our contributions are summarized as follows:

• All-in-one framework We propose an architecture for physics-
based motion tracking in contact-rich interactions, removing the
reliance on task-specific or multi-stage controllers.

• Progressive mixture-of-experts We introduce a progressive
mixture-of-experts strategy that gradually adding new experts to
model the hierarchical levels of torque control, enabling stable
prediction of joint torques.

• Robust interaction tracking We demonstrate the effectiveness of
our method on large-scale datasets, showing superior tracking
accuracy, smooth and realistic interactions across diverse tasks,
and strong robustness under perturbations.

2. Related Works

2.1. Physics-based Humanoid Motion Tracking

Since no ground-truth data exist of human joint actuation and
physics simulators are often non-differentiable, a policy, aka con-
troller, is often trained to track and mimic human motion using deep
reinforcement learning (RL). From [PALV18], RL-based motion
tracking has gone from imitating single clips to large-scale datasets
[CMM*18; WGSF20; LCKX*23; FBH21]. Among them, a mix-
ture of experts [WGH20], differentiable simulation [RYC*23], and
external forces [YK20] have been used to improve the quality of
motion imitation. Recently, Luo et al. [LCKX*23] allows a sin-
gle policy to mimic almost all of AMASS and recover from falls.
Luo et al. [LCM*23] improve [LCKX*23] to track all AMASS and
distill its motor skills into a latent space. Luo et al. [LCC*24] fo-
cuses on humanoid motion imitation with articulated fingers. Luo
et al. [LCK*24] focuses on tracking whole body motions based
on head mounted devices. Xu et al. [XSYP25] proposes a con-
troller to reduce incorrect contacts or discontinuities for traversing
new terrains. Tessler et al. [TGN*24] learns a physics-based con-
troller to provide an intuitive control interface without requiring
tedious reward engineering for all behaviors of interest. Juravsky
et al. [JGFP24] trains controllers on thousands of diverse motion
clips via progressive expert distillation. CLoSD [TRC*25] uses a
diffusion model [CKCS26] for tracking. While existing tracking
methods have advanced physics-based generation of single char-
acter, they cannot generalize into two-character interactions due to
the force transfer and significantly increased complexity.

2.2. Physics-based Two-Character Interaction Synthesis

Although physics-based methods has shown promising results for
individual characters performing a wide variety of behaviors, there
exist only a few studies for multi-character animations. Park et
al. [PRL*19] shows an example of chicken hopping and fighting
with pre-defined discrete actions as well as target goals. While it
shows the potential of physics-based two-character interaction syn-
thesis, their interactions are simple and sparse. Won et al. [WGH21]
presents a control strategy for two boxing or fencing characters by
defining goal-oriented rewards. However, the control policy only
demonstrates effectiveness on a specific interaction task with such
task-specific rewards. Zhang et al. [ZGY*23] proposes a new re-
ward formulation to facilitate various types of spatially and tempo-
rally dense interactions for full-body humanoid characters. How-
ever, their controllers are imitation controllers that cannot perform
interactions that do not exist in the reference motions. Zhu et al.
[ZZLH23] combines discrete latents with reinforcement learning
to synthesize two-character boxing motions. However, their pol-
icy requires multiple stages to train and their control is specific

© 2026 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



X. Zhang & Z. Chang & Q. Men & H. P. H. Shum / Physics-Based Motion Tracking of Contact-Rich Interacting Characters 3 of 9

to tasks. Younes et al. [YKK*23] leverages adversarial imitation
learning to generalize the idea of motion imitation for one char-
acter to deal with both the interaction for two physics-based char-
acters. Their control policy is also specific to an interaction type
and cannot generalize to multiple types. Liu et al. [LCDY24] fo-
cuses on reactive motions of one character when it interacts with
the other character. Luo et al. [LWL*24] proposes a benchmark for
simulating two-character interactions in the field of sports. How-
ever, their interactions are sparse and far from each other. Xie et al.
[XSLvdP22] introduces a layer-wise mixture-of-experts architec-
ture to integrate a diverse range of high-precision soccer juggling
skills into a single physics-based character controller. Their sys-
tem utilizes a task-description framework based on control graphs
and success-adaptive random walks to facilitate the efficient learn-
ing of complex motor tasks and robust transitions between dif-
ferent body-part interactions. While kinematics-based interaction
modeling [ZCMS25a; ZCMS25b; CWKS25] involve dense inter-
actions, they do not consider physics. Our work focuses on gener-
ating contact-rich interactions within an all-in-one pipeline, which
has been one of the challenging problems in physics-based two-
character interaction animation.

3. Method

3.1. Motion Tracking

We aim to achieve physics-based motion tracking through training
a policy π which enable a simulated humanoid character to produce
a pose that closely resembles a kinematic target pose. The policy
network is commonly conditioned on the future pose as a target
for policy to imitate. At each timestep t, with observed state st and
goal gt , an RL agent interacts with an environment by applying
an action at sampled from policy at ∼ π(at |st ,gt) and receives a
reward rt . The physics simulation environment defines transition
dynamics p(st+1|st ,at) that produces the next state st+1. Similar to
prior goal-conditioned reinforcement learning, we use the proximal
policy gradient (PPO) to train the policy. The objective is to learn a
policy that maximizes the discounted cumulative reward:

Ep(s0)∏
T−1
t=0 p(st+1|st ,at )π(at |st ,gt )

[
T

∑
t=0

γtrt

]
, (1)

where γ is the discount factor that reduces the weight of future re-
wards in PPO.

3.1.1. Observation

The observation input consists of humanoid state st and the goal
state gt+1 that describes the target pose for the policy to imitate.
Humanoid state st = (sp

t ,s
v
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t and
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t .
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3.1.2. Reward Function

The reward rt encourages the agent to track the reference motion
by minimizing the difference between the state of the simulated

character and the ground truth:

rtrack
t = wprp

t +wqrq
t +wvrv

t +wara
t +wjprjp

t +wjvrjv
t , (2)

where w{·} denotes the respective weights, r{·} denote the reward
functions for tracking target body position, quaternion, linear ve-
locity, angular velocity, joint position and joint velocity.

We also apply an energy penalty reward renergy
t to minimize the

high-frequency jitter. Total reward is calculated as:

rt = rtrack
t +0.5× renergy

t . (3)

Detailed calculation and parameters of rewards can be found in sup-
plementary material.

3.1.3. Action

Similar to prior work [PGH*22; LCKX*23; TGN*24], our policy
generates the action at ∈ RJ which serves as the target for propor-
tional derivative (PD) controller to apply torque at each joint. The
action at is sampled from a multi-dimensional Gaussian distribu-
tion at ∼N (āt ,σ), where āt is the mean action predicted by policy
and σ ∈ RJ is learnable standard deviation.

3.1.4. Motion Sampling Strategy

To encourage sampling more challenging motions during policy
training, we record the tracking rewards and adjust the sampling
probabilities of different motion clips based on their recent track-
ing performance:

pm,t = Softmax(
−r̄track

m
T ), (4)

where T is the annealing temperature, r̄track
m is the recent average

tracking reward of motion clip m and pm,t is the calculated sam-
pling probability of motion clip m at timestep t.

3.2. Progressive Interaction Tracking

Training a single policy network for motion tracking on a large
dataset could be difficult as it easily leads to catastrophic forgetting.
Inspired by the continual learning paradigm of PNN, we introduce
a model designed for tracking large-scale motion dataset automati-
cally without hand-crafted dataset schedule of various difficulties.

3.2.1. Policy Model

Unlike vanilla PNNs that switch distinct experts for distinct tasks,
our PNN experts operate additively. Each new expert does not re-
place the previous one but learns a residual action offset to correct
the errors of the earlier frozen experts. The Gating Network is not
a standard mixture-weight generator. Instead, it acts as a reward
predictor that estimates how "confident" the experts are for a given
state. The connection between them is governed by the routing ratio
(Equation 7). Samples with low predicted rewards (low confidence)
are routed to the new expert to learn the necessary corrective off-
sets.

In the context of this work, "difficulty" here specifically corre-
lates to samples with stronger physical contact forces. A key con-
tribution of our work is that we do not manually label difficulty. In-
stead, the system quantitatively defines "difficult" samples as those
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Figure 2: Framework overview. We train a progressive learning model in which later experts build on the knowledge from earlier experts,
but specializing in more challenging motions. The policy receives humanoid state and goal state, and outputs actions for the proportional
derivative (PD) controller to generate torques. Experts are activated sequentially, with adapters enabling knowledge transfer and a gating
network estimating confidence.

with low estimated tracking rewards. These are the samples where
previous experts fail to predict the correct joint torques required to
maintain the pose against external perturbations.

Specifically, the entire policy model π contains k expert networks
π = (π0, . . . ,πk) where each expert network is a 3-layer MLP with
LeakyReLU activation. To facilitate efficient multitasking and pre-
vent catastrophic forgetting, the architecture incorporates a gating
network fg and multiple lateral adapters [RRD*16] that connect
sequential experts. These adapters function as knowledge trans-
fer mechanisms, allowing newly activated experts to leverage the
structural embeddings of previous frozen experts to learn residual
action offsets. Instead of generating weights to blend expert out-
puts, the gating network is used for predicting the reward based
on the input observation. Given an observation, gating network
fg(st ,gt) : Rd → Rk outputs an independent confidence of the ex-
perts:

r̃k(st ,gt) = Sigmoid( fg(st ,gt)k), (5)

where the Sigmoid activation maps the output to the unit interval
[0,1], ensuring that the predicted confidence r̃k is numerically con-
sistent with the environment’s normalized tracking rewards.

We start by training the first expert π0 on the full dataset and all
other experts are frozen. When the growth of estimated reward r̃0
is stagnated, we stop updating the expert and activate a new one π1
for learning harder motions by predicting the complementary offset
actions on top of previous experts:

πk(st ,gt) = ∑
i<k

πi(st ,gt). (6)

However, it is difficult to seamlessly transition to a new expert.
On one hand, the new expert needs to model the action distribu-
tion from scratch, which would lead to a significant drop in reward
and time-consuming re-training. On the other hand, copying the
parameters from previous expert to new one would inherit the bias
and prevent expert from learning new knowledge.

We deploy two mechanisms to ensure stable transition from old
to new expert while enabling the new one to learn novel knowl-
edge effectively. First, we copy the parameters to all but the final
layer, while zero-initializing the last layer and randomly initialize

the adapters connected to the last layer (which is different from the
vanilla PNN). This is helpful to keep embedding capability inher-
ited from old expert and ensure capacity for learning to adapt prior
knowledge. Second, we propose a Progressive Sampling Strategy
where the number of samples routed to the new expert depends on
the estimated rewards compared to previous ones:

βk = max(1,
r̃k(st ,gt)

r̃k−1(st ,gt)
), (7)

where βk denotes the proportion of the samples with the lowest es-
timated rewards that are routed to expert πk. This strategy encour-
ages the new expert to prioritize learning harder motions. As the
new expert improves, it is gradually exposed to samples in which
the previous experts are more confident, until its performance satu-
rates and a new expert is activated again.

3.2.2. Loss Function

During training, we activate only a single expert at a time and each
expert k maintains its own learnable log standard deviation param-
eter logσk. Using multiple logσk simultaneously in PPO causes
unintended gradient updates in inactive experts. For the policy loss
computation, we mask out the log standard deviations of all frozen
experts, such that only the active expert’s logσk∗ is used when con-
structing the Gaussian distribution:

πk∗(at |st) =N (āt , exp(2logσk∗)). (8)

This ensures that gradients flow exclusively through the active ex-
pert, while the log stds of inactive experts remain unchanged.

In order to encourage experts to reuse the learned knowledge
through adapters, we also add an adpater usage loss:

u =
∑i∈Ak

∥θ
adapter
i ∥

∑i∈Ak
∥θ

adapter
i ∥+∥θ

expert
k∗ ∥

, (9)

Ladapter =− log(u+ ε), (10)

where θ{·} is the weights of adapters or linear layer of expert, Ak

is the set of active adapters connecting to expert k and ε = 10−6.

For simplicity, we omit the detailed derivations of the policy and
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Figure 3: Qualitative comparison of tracking results across different models. From top to bottom, our method, MLP, MoE and PNN are
shown that performs boxing interaction, respectively. Baseline models often exhibit instability or loss of balance under dense contact, while
our method produces more stable and realistic interactions that closely follow the target motions.

value losses, as they follow the standard PPO formulation. Total
loss function is formed as L= Lpolicy +Lvalue +0.03×Ladapter.

For the gating network, it is updated independently from the
tracking policy using the actual rewards from the environment:

Lgating =
√

∑
k
(rk − r̃k)2. (11)

4. Experiments

4.1. Implementation Details

We conduct our experiments with an NVIDIA A100 GPU for train-
ing 4 experts. The physics simulation is run on NVIDIA Isaac Lab
[MYY*23]. We use SMPL [LMR*23] kinematic structure for the
humanoid which contain 24 rigid bodies (pelvis as the root joint)
and 69 degrees of freedom. Following prior work [PALV18], the
starting frame of training episode is randomly selected from the
sampled motion clip and the episode will be early terminated if the
averaged rigid body distance to the target is lower than 0.5m. Our
model is trained on InterHuman [LZL*24] which contains motion
sequences of 1 million frames (10 hours at 30 fps).

4.2. Baselines

We compare our method against three baseline tracking policy
models:

• A 3-layer multi-layer perceptron network (MLP) that represents
the basic policy implementation such as SONIC [LYW*25].

• Mixture-of-experts network (MoE) which is representative for
learning diverse skills used in previous works like DeepMimic
[PALV18].

• Progressive Neural Network (PNN) [RRD*16] that represents
the manual progressive strategies used in recent SOTA like PHC
[LCKX*23]. PHC relies on a manually scheduled progressive
network; our PNN baseline implements this exact manual strat-
egy to demonstrate its limitations compared to our automatic
routing. Specifically, the full dataset is partitioned into four sub-
sets based on the averaged relative distances between the two
humanoid robots, with later experts assigned to motions involv-
ing more frequent inter-body contacts.

4.3. Results

4.3.1. Tracking Performance

Following prior work [LCKX*23; TGN*24], in Table 1, we evalu-
ate the tracking success rate (referred to as ‘Success’) as the ratio
of successful episodes in which the average joint position error at
every frame is less than 0.5m. We also report the mean per-joint po-
sition error (MPJPE) to assess the accuracy of alignment with the
target pose. Despite the frequent perturbations of contact, our ap-
proach still achieves robust performance and a significantly higher
success rate.

Figure 7 shows the tracking reward curves of all methods. MLP
quickly saturates in the early stage and later degrades due to catas-
trophic forgetting. MoE achieves higher rewards than MLP with
its larger capacity but still suffers from forgetting. PNN exhibits
sharp drops when new experts are activated, caused by the distri-
bution shift across motion subsets, and also incurs higher training
cost since each expert must be trained from scratch. In contrast,
our method exhibits substantially more stable transitions when in-
troducing new experts and requires considerably less training time.
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Moreover, it automatically routes appropriate number of samples
to the active experts, thereby obviating the need for manual dataset
scheduling across experts in progressive learning.

As illustrated in Figure 6, our method also demonstrates strong
adaptability when the interaction skill transitions abruptly from
spinning to boxing. Despite the sudden change in motion dynamics,
the characters maintain stable coordination without collapsing into
unnatural states. This indicates that the progressive expert routing
effectively preserves prior knowledge while enabling quick adapta-
tion to new interaction modes. Notably, the system avoids discon-
tinuous prediction across multiple experts, which are common in
skill-specific controllers such as PNN.

Train Set Test Set
Success↑ MPJPE↓ Success↑ MPJPE↓

MLP 53.3% 81.3 28.5% 117.0
MoE 76.2% 55.7 64.0% 69.4
PNN 82.3% 50.9 78.7% 58.1
Ours 91.8% 37.9 85.2% 43.4

Table 1: Comparison of tracking performance across baselines and
our method on InterHuman dataset. We report success rate and
mean per-joint position error (MPJPE) on both training and test
sets.

We further evaluate our method on a subset of the AMASS
dataset to examine its performance in single-character tracking sce-
narios. This subset consists of approximately 200 motion clips, to-
taling 300 minutes of motion sequences at 30 fps. For the PNN
baseline, the dataset is partitioned into four subsets assigned to four
corresponding experts based on averaged joint velocities. As shown
in Table 2, all models demonstrate higher tracking success rates
on AMASS compared to the InterHuman dataset, which is primar-
ily attributed to the absence of inter-body perturbations inherent in
two-character interactions.

Train Set Test Set
Success↑ MPJPE↓ Success↑ MPJPE↓

MLP 71.5% 56.0 66.5% 72.3
MoE 86.3% 47.2 82.9% 53.1
PNN 91.6% 42.8 88.4% 46.5
Ours 96.7% 36.1 93.0% 40.2

Table 2: Comparison of tracking performance across baselines and
our method on AMASS dataset.

4.3.2. Perturbations

To assess robustness, we introduce perturbations to the tracked hu-
manoid by randomly throwing objects of varying masses and by
injecting noise into the input observations. In these experiments,
all models, including the baselines, are retrained in environments
where such perturbations are applied during training. Quantitative
and qualitative results are reported in Table 3.

When tested with external disturbances, our approach sustains

Figure 4: Tracking under external perturbations with different ob-
ject masses (3 kg, 7 kg, 15 kg). As the perturbation strength in-
creases, the characters experience growing difficulty in maintain-
ing stable interaction.

Figure 5: Tracking under observation noise with different noise
scales (0.1, 0.3, 0.7). Larger noise levels lead to instability and
loss of balance in the interactions.

high success rates, while baseline methods show marked degrada-
tion. Notably, PNN fails under perturbations due to its gating net-
work’s reliance on dataset-specific specialization, which does not
generalize when noise shifts the input distribution. MoE handles
perturbations slightly better through soft blending, but still lacks
sufficient adaptability. Since MoE and MLP are already prone to
catastrophic forgetting, they perform even worse in noisy environ-
ments compared to safe ones. Our experts, trained progressively
with sample routing, exhibit significantly stronger resilience to ob-
servation noise and external force perturbations. This suggests that
expert specialization in our framework is not brittle but rather com-
plementary, where later experts refine challenging behaviors with-
out overwriting earlier skills.

Object Perturb Noise Inject
Success↑ MPJPE↓ Success↑ MPJPE↓

MLP 14.5% 177.6 20.3% 139.9
MoE 52.4% 90.6 57.1% 81.1
PNN 55.3% 84.3 59.5% 77.0
Ours 75.3% 59.0 80.2% 52.9

Table 3: Robustness evaluation under perturbations. Performance
is measured when randomly throwing objects of varying masses
(Object Perturb) and injecting noise into input observations (Noise
Inject).

4.3.3. Expert Contribution

In our method, later experts enhance learning capacity by specializ-
ing in more challenging input samples and predicting action offsets
for earlier experts. The results in Table 4 sheds light on how differ-
ent experts contribute during training. We observe that each newly
activated expert reduces both MPJPE and training time, which in-
dicates that later experts act as refiners by predicting action offsets
relative to earlier experts. Interestingly, the marginal improvement
between the fourth and fifth expert is small, suggesting diminishing
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Figure 6: Tracking with interaction skill transitions. The target interaction shifts from spinning to boxing, and our system remains robust to
these abrupt changes without failure.

Figure 7: Training reward curves of baselines and our method.
Our approach shows smooth transitions between experts and faster
convergence compared to PNN.

returns once the model capacity surpasses the scale of InterHuman.
This analysis confirms that four experts are sufficient for the present
dataset, and that our automatic routing strategy naturally balances
capacity and efficiency without requiring manual dataset schedul-
ing.more quickly.

Another important observation is that our approach substantially
reduces training time compared to PNN. In PNN, each expert is
trained nearly from scratch on a subset of data, resulting in redun-
dant training and sharp reward drops. Our method mitigates this by
transferring knowledge across experts, as shown by the smooth re-
ward curve (Figure 7). This not only improves efficiency but also
avoids instability during expert activation, which is crucial for scal-
ing to larger datasets.

Success↑ MPJPE↓ Training Time (hours)
Expert 1 61.1% 83.4 29
Expert 2 72.6% 60.2 19
Expert 3 82.7% 47.5 15
Expert 4 85.2% 43.4 7
Expert 5 85.8% 42.7 2

Table 4: Contribution of different experts in our progressive frame-
work. Later experts improve success rate and MPJPE while re-
quiring less training time, showing that specialization accelerates
learning.

4.3.4. Ablation Study

We conduct experiments ablating key components of our frame-
work: (1) Progressive Sampling Strategy (PSS), where all new ex-
perts are trained on the full dataset when initiated instead of rout-
ing based on estimated rewards; (2) adapters, removing the lateral
connections between experts that enable knowledge transfer; and
(3) adapter loss, omitting the regularization term that encourages
adapter usage (Equation 10).

Success↑ MPJPE↓ Training Time (hours)
Full Setup 85.2% 43.4 70
w/o PSS 68.0% 64.1 167
w/o adapter 76.3% 60.9 122
w/o adapter loss 82.3% 49.1 70

Table 5: Qualitative results of full setup and ablated versions of
our method.

Removing Progressive Sampling Strategy causes the largest per-
formance drop and substantially increases training time. This re-
veals that the model wastes capacity re-learning easy samples for
each expert instead of specializing on hard, contact-heavy failures.
Ablating the adapters also degrades tracking quality and slows
training. This shows that progressive experts cannot function in
isolation. Without lateral knowledge transfer, each new expert is
forced to re-learn large parts of the representation space, leading
to redundant computation Removing the adapter loss leads to a
smaller but noticeable decline in performance. The loss acts mainly
as a fine-tuning mechanism rather than a structural necessity. It
gently encourages later experts to reuse previous knowledge via
adapters instead of over-specializing or ignoring them.

4.3.5. Motion Sampling Strategy

We further evaluate the impact of different motion sampling strate-
gies on performance. Specifically, we compare four approaches: (1)
Uniform, where all motion clips are sampled with equal probabil-
ity; (2) Motion Duration, where longer clips are assigned higher
sampling probabilities; (3) Success Rate, where clips with lower
success rates are prioritized to encourage training on more dif-
ficult motions; and (4) Tracking Reward, where clips with lower
tracking rewards are sampled more frequently to emphasize chal-
lenging cases. In Table 6, we report both the success rate and the
mean episode length (referred to as ‘Episode’) in training stage.
The mean episode length reflects the average duration of simula-
tion an agent survives before the episode ends, either due to task
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Figure 8: Ablation on the number of experts in our progressive framework. With only 1–2 experts, the characters often fail to maintain stable
interactions. Adding more experts (3–4) improves tracking quality, showing that later experts specialize in handling more challenging motion
dynamics.

termination (e.g., falling or large tracking error) or truncation at the
maximum allowed horizon.

Table 6 highlights how different motion sampling strategies in-
fluence tracking performance. The Uniform strategy yields the low-
est success rate and episode length, as it does not differentiate be-
tween motions of varying complexity. Motion Duration provides
a modest improvement, suggesting that longer clips contain more
diverse patterns that benefit learning. However, the gains remain
limited because this strategy does not explicitly prioritize difficult
motions.

In contrast, Success Rate sampling substantially improves both
success and episode length. By down-weighting easier motions
and emphasizing those with lower success, the policy is ex-
posed to more challenging interactions. Similarly, Tracking Reward
achieves the best overall performance. Prioritizing motions with
lower tracking reward ensures that the policy repeatedly trains on
failure-prone sequences, which leads to longer survival time dur-
ing episodes. Interestingly, the difference between Success Rate
and Tracking Reward is relatively small, but the latter consistently
achieves the highest values. This suggests that reward-based sam-
pling provides a finer-grained signal of difficulty compared to bi-
nary success or failure.

Success↑ Episode (seconds)↑
Uniform 74.4% 14.9
Motion Duration 81.7% 17.1
Success Rate 88.4% 20.5
Tracking Reward 91.8% 21.2

Table 6: Impact of motion sampling strategies. Adaptive sampling
based on success rate or tracking reward leads to higher suc-
cess and longer average episode length compared to uniform or
duration-based sampling.

5. Conclusion

We introduced a progressive mixture-of-experts framework for
physics-based motion tracking of contact-rich interactions. By pro-
gressively expanding expert capacity and automatically routing
training samples, our method achieves stable and efficient learn-
ing without requiring manual dataset scheduling. Experiments on
large-scale datasets demonstrate that our approach surpasses prior

baselines in tracking accuracy, robustness under perturbations, and
training efficiency. Ablation studies further confirm that later ex-
perts specialize in more challenging dynamics while maintaining
smooth knowledge transfer across the model. We believe this all-
in-one progressive framework offers an extensible foundation for
the community to advance research in motion tracking without re-
liance on task-specific controllers or fragmented training pipelines.
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