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Abstract
Depth sensors have become one of the most popular means of generating human
facial and posture information in the past decade. By coupling a depth camera and
computer vision based recognition algorithms, these sensors can detect human
facial and body features in real time. Such a breakthrough has fused many new
research directions in animation creation and control, which also has opened up
new challenges. In this chapter, we explain how depth sensors obtain human
facial and body information. We then discuss on the main challenge on depth
sensor-based systems, which is the inaccuracy of the obtained data, and explain
how the problem is tackled. Finally, we point out the emerging applications in the
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field, in which human facial and body feature modeling and understanding is a
key research problem.

Keywords
Depth sensors • Kinect • Facial features • Body postures • Reconstruction •
Machine learning • Computer animation

Introduction

In the past decade, depth sensors have become a very popular mean of generating
character animation. In particular, since these sensors can obtain human facial and
body information in real time, it is used heavily in real-time graphics and games.
While it is expensive to use human motion to interact with computer applications
using traditional motion capture system, depth sensors provide an affordable alter-
native. Due to the low cost and high robustness of depth sensors, it can be applied in
a wide application domain with easy setup. Apart from popular applications such as
motion-based gaming, depth sensors are also applied in emerging applications such
as virtual reality, sport training, serious games, smart environments, etc.

In order to work with depth sensors, it is important to understand their working
principle, as well as their strength and weakness. In this chapter, we provide compre-
hensive information on how depth sensors track human facial and body features using
computer vision and pattern recognition based techniques, and identify their strength
in computational cost and robustness. Then, we focus on the major weakness of depth
sensors, that is, the low accuracy that happens during occlusion, and explain possible
solutions to improve recognition quality in detail. In particular, we discuss in depth on
machine learning-based reconstruction method that utilize prior knowledge to correct
corrupted data obtained by the sensors. Finally, we give some examples on depth
sensors-based application, especially in the field of animation creation, to show how
these sensors can improve existing methods in human-computer interaction.

In the rest of this chapter, we review the state of the art in section “State of the
Art.”We explain in more details about how depth sensors obtain and process human
facial and body movement information in section “Extracting Facial and Body
Information.”We then discuss on the main challenge on depth sensor-based systems,
which is about the relatively low accuracy of the data obtained, and explain how this
challenge can be tackled in section “Dealing with Noisy Data.” We finally point out
various emerging applications developed with depth sensors in section “Depth
Camera-Based Applications” and conclude this chapter in section “Conclusion.”

State of the Art

Typical depth sensors utilize a depth camera to obtain a depth image. The main
advantage of the depth camera over traditional color cameras is that instead of
obtaining color information, it estimates the distance of the objects seen by the
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camera using an infrared sensor. The images taken from a depth camera are called
depth images. In these images, the pixels represent distance instead of color.

The nature of depth images provides a huge advantage in automatic recognition
using computer vision and machine learning algorithm. With traditional color
images, recognizing objects requires segmenting them based on color information.
This is challenging under situations in which the background has a similar color as
the foreground objects (Fernandez-Sanchez et al. 2013). Moreover, color values are
easily affected by lighting conditions, which reduces the robustness of object
recognition (Kakumanu et al. 2007). On the contrary, with depth images, since the
pixel value represents distance, automatic object segmentation becomes independent
of the color of the object. As long as the object is geometrically separated from the
background, accurate segmentation can be performed. Followed by such an
improved segmentation process is an improved object recognition system, which
identifies the nature of the objects using accurate geometric features. Such an
advancement in accuracy and robustness allows depth sensors to become a popular
commercial product that leads to many new applications.

The Microsoft Kinect (https://developer.microsoft.com/en-us/windows/kinect),
which utilizes both color and depth cameras, is one of the most popular depth
sensors. Due to the uses of both color and depth cameras, Kinect can create a 3D
point cloud based on the obtained images. Figure 1 shows the images obtained by the
two cameras, as well as two views of the corresponding point cloud. Kinect gaming
usually involves players controlling the gameplay with body movement. Virtual
characters in the game are then synthesized on the fly based on the movement
information obtained. Such a kind of application involves different domains of
research. First, computer vision and machine learning techniques are applied to
analyze the depth images obtained by the depth sensor. This typically involves
recognizing different human features, such as the human body parts (Shotton
et al. 2012). Then, human computer interaction researches are applied to translate
to control signals from the body movement into gameplay controls. Computer
graphics and animation algorithms are used to create real-time rendering, which
usually includes character animation synthesized from the movement of the player.
In some situations, virtual reality (Kyan et al. 2015) or augmented reality (Vera
et al. 2011) research is adapted to enhance the immersiveness of the game.

However, depth sensors are not without their weaknesses. Comparing to tradi-
tional capturing devices such as accelerometers, the accuracy of depth sensors is

Fig. 1 (From left to right) The color and depth images obtained by a Microsoft Kinect, as well as
two views of 3D point cloud rendered by combing the color and depth information
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considerably lower. This is mainly because these sensors usually consist of a single
depth camera. When occlusions occur, the sensors cannot obtain information from
the shielded area. This results in a significant drop in recognition accuracy. While it
is possible to utilize multiple depth cameras to obtain better results, one has to deal
with the cross-talk, interference of infrared signals, among multiple cameras (Alex
Butler et al. 2012). It also deficits the advantage of using depth sensors in terms of
easy setup and efficient capture. Therefore, it is preferable to enhance the sensor
accuracy using software algorithms, instead of introducing more hardware.

To enhance the quality of the obtained data, machine learning approaches using
prior knowledge of the face and body features have shown great success (Shum
et al. 2013). The main idea is to apply prior knowledge onto the tracked data and
correct the less reliable parts or introduce more details onto the data. Such knowl-
edge can either be defined manually or learned from examples. The key here is to
represent the prior knowledge in a way that is efficient and effective to be used
during run-time.

Extracting Facial and Body Information

There is a large body of research in obtaining facial and body information from depth
cameras. In this section, we explain some of the main methods and discuss on their
performances.

Facial Feature

Facial feature detection usually involves face segmentation and landmark detection.
The former segments the face from the background, while the latter detect key
regions and feature points. To segment the face area from the background and the
rest of the human body, one can detect the skin color and perform segmentation
(Bronstein et al. 2005). However, such a method is easily affected by illumination.
Using the histogram of depth information from the depth image can improve the
system robustness (Segundo et al. 2010). Since human faces have the same topology,
it is possible to apply geometric rules to identify landmarks on the face. A simple
example is to approximate the face with an ellipse and divide the ellipse into
different slices based on predefined angles (Segundo et al. 2010). For each slices,
corresponding features can be searched based on the 3D height of the face. For
example, the eyes are the lowest point on the corresponding slice, while the nose is
the highest. Similarly, it is possible to use local curvature to represent different
features on the face, so as to determine different facial regions (Chang et al. 2006).
For example, the eye regions are usually a valley and can be represented by a specific
value of mean curvature and Gaussian curvature. The disadvantage for these
methods is that manually defined geometric rules may not be robust for different
users, especially for users coming from different countries. A better solution is to
apply a data-driven approach. For example, one can construct a database with
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segmented facial regions and train a random forest that can automatically identify
facial regions on a face (Kazemi et al. 2014).

Another direction of representing facial features is to use predefined facial
template (Li et al. 2013; Weise et al. 2011). Such a template is a high-quality 3D
mesh with controllable parameters. During run-time, the system deforms the 3D
template to align with the geometry structure of the segmented face from the depth
image. Such a deformation process is usually done by numerical optimization due to
the high degree of freedom. Upon successful alignment, the systems can understand
the observed face in the depth image with the deformed template. It can also
represent the face with a set of deformation parameters so as to control animation
in real-time.

Microsoft Kinect also provides support for 3D landmark detection, as shown in
Fig. 2. Different expressions can be identified based on the arrangements of 3D
landmarks. Such understanding of facial orientation and expression is useful for real-
time animation control.

Body Posture

The mainstream of depth sensors-based body recognition system is to apply pattern
recognition and machine learning techniques to identify the human subject. By
training a classifier that can identify how individual body part appears in the depth
image, one can recognize these parts using real-time depth camera input (Girshick
et al. 2011; Shotton et al. 2012; Sun et al. 2012). There are several major challenges
in this algorithm. Chief among them is the availability of training data. In order to
train a classifier, a large number of depth images with annotation indicating the body
parts are needed. Since body parts appear differently based on the viewing angle, the
training database should capture such parts in different viewpoints. Moreover, since
users of different body sizes appear differently in depth images, to train a robust
classifier that can handle all users, training images consisting of body variation are

Fig. 2 3D facial landmark identified by Kinect overlapped on 2D color images
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needed. As a result, hundreds of thousands of annotated depth images will be
required, which exceeds what human labors can generate. To solve the problem, it
is proposed to synthesize depth images using different humanoid models and 3D
motion capture data. Since the body part information of these humanoid models is
known in advance, it becomes possible to automatically annotate the position of the
body parts in the synthesized depth image. With these training images, one can train
a decision forest to classify depth pixels into the corresponding body parts. Different
designs of decision forest have resulted in different level of success, and they are all
capable of identifying body parts in real-time.

Microsoft Kinect also applied a pattern recognition approach to recognize body
parts with the depth images (Shotton et al. 2012). Figure 3 shows the results of
Kinect posture recognition, which is shown as the yellow skeleton. By overlapping
the skeleton with the 3D point cloud, it can be observed that the Kinect performs
reasonably accurate under normal circumstances.

Another stream of method in body identification and modeling is to take advan-
tage of the geometry of human body and utilize body template model (Liu
et al. 2016a; Zhang et al. 2014a). First, the pixels in the depth image that belongs
to the human body are extracted. Since the pixel value represents distance, one can
project them into a 3D space and create a point cloud of human body. Then, the
system fits a 3D humanoid mesh model into such a point cloud, so as to estimate the
body posture. This process involves deforming the 3D mesh model such that the
surface of the model aligns with the point cloud. Since the template model contains
human information such as body parts, when deforming the model to fit the point
cloud, we identify the corresponding body information in the point cloud. The main
challenge in this method is to deform the mesh properly to avoid unrealistic postures
and over-deformed surfaces, which is still a challenging research problem. Physics-
based motion optimization can ensure the physical correctness of the generated
postures (Zhang et al. 2014a). Utilizing simplified, intermediate template for defor-
mation optimization can enhance the optimization performance (Liu et al. 2016a).
This method can potentially provide richer body information depending on the
template used. However, a major drawback of such an optimization-based approach
is the higher run-time computational cost, making it inefficient to be applied in real-
time systems.

Fig. 3 (Left) The 3D skeleton obtained by Microsoft Kinect with the corresponding depth and
color images. (Middle and Right) Two views of the 3D point cloud together with the obtained 3D
skeleton
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Human Environment Interaction

The depth images captured do not only contain information about the user but also
the surrounding environment. Therefore, it is possible to identify high-level infor-
mation about how the user interacts with the environment.

Unlike the human body, the environment does not have a uniform structure, and
therefore it is not possible to fit a predefined template or apply prior knowledge.
Geometry information based on planes and shapes become the next available infor-
mation to extract. The RANdom SAmple Consensus (RANSAC) algorithm can be
used to identify planer objects in the scenes such as walls and floors, which can help to
understand how the human user moves around in the open areas (Mackay et al. 2012).
It is also possible to compare successive depth images to identify the moving parts, in
order to understand how the user interacts with external objects (Shum 2013).

Depth cameras can be used for 3D scanning in order to obtain surface information
of the environment or even the human user. While one depth image only provide
information about a partial surface, which we called a 2.5D point cloud, multiple
depth images taken from different viewing angle can combine and form a full 3D
surface. One of the most representative systems in this area is called KinectFusion
(Newcombe et al. 2011). Such a system requires the user to carry a Kinect and
capture depth images continuously over a static environment. Real-time registration
is performed to understand the 3D translation and rotation movement of the depth
camera. This allows alignment of multiple depth images to form a complete 3D
surface. Apart from scanning the environment, it is possible to scan the face and
body of a human user (Cui et al. 2013) and apply real-time posture deformation on
the Kinect tracked skeleton (Iwamoto et al. 2015). Finally, because single view depth
cameras suffer from the occlusion problem, it is proposed to capture how human
users interact with objects by combining KinectFusion, color cameras, and
accelerometer-based motion capture system (Sandilands et al. 2012, 2013).

Since depth sensors can obtain both environment and human information, it facili-
tates the argument that human information can enhance understanding of unstructured
environment (Jiang and Saxena 2013; Jiang et al. 2013). Using a chair as an example. A
chair can come with different shapes and designs, which makes recognition extremely
difficult. However, the general purpose of a chair is for human to rest on. Therefore, with
the human movement information obtained by depth cameras, we can identify a chair
not just by its shapes but also by the way the human interacts with it. Similarly, human
movement may be ambiguous sometimes. Understanding the environment helps us to
identify the correct meaning of the humanmotion. Depth sensors open up new directions
on recognition by considering human and environment information together.

Dealing with Noisy Data

The main problem of using depth sensors is to deal with the noisy data obtained. In
particular, most depth sensor-based applications rely on a single point of view to
obtain the depth image. As a result, the quality of the detected face and posture are of
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low resolution and suffer heavily from occlusion. It is possible to apply machine
learning algorithms to enhance the quality of the data. The idea is to introduce a
quality enhancement process that considers prior knowledge of the human body,
which is typically a database of high-quality faces or postures, as shown in Fig. 4. In
this section, we discuss how body and facial information can be reconstructed from
noisy data.

Face Enhancement

While depth sensors can obtain facial features, due to the relatively low resolution,
the quality of the features is not always satisfying. The 3D face obtained is usually
missing details and unrealistic. In this section, we explain how we can enhance the
quality of 3D faces obtained from depth sensors.

Since the quality of a single depth image is usually noisy with low resolution, the
3D facial surface generated is rough. By obtaining high-quality 3D faces through 3D
scanners and their corresponding color texture, one can construct a face database and
extract the corresponding prior knowledge (Liang et al. 2014; Wang et al. 2014).
These faces in the database are divided into patches such as eyes, nose, etc. Since
color texture is available, one can take advantage of color features to enhance the
segmentation accuracy. Given the low quality depth and color images of a face
obtained from sensors, facial regions are obtained in run-time. For each region
obtained, a set of similar patches is found in the database. Such a region is then
approximated by a weight sum of the database patches. By replacing different parts
of the run-time face image with their corresponding approximation, a high-quality
3D face surface can be generated. This method depends heavily on the quality and
variety of face in the database, as well as the way we abstract those faces to represent
the one observed by depth sensors in run-time.

Constructing a database for prior knowledge is costly. It is therefore proposed to
scan the face of the user in different angles, and apply such a face to enhance the
run-time detected face (Zollhöfer et al. 2014). The system first requests the user to
rotate around a depth sensor and obtain a higher quality 3D mesh, using registration
methods similar to the KinectFusion mentioned in the last section (Newcombe
et al. 2011). Then, given a run-time lower quality depth image of the face, the
system deforms the high quality 3D mesh such that it aligns with the depth image

Fig. 4 An overview of depth sensors data enhancement
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pixels. As a result, high quality mesh with run-time facial expression can be
generated. The core problem here is to deform the high quality facial mesh nicely
and avoid generating visual artifact. It is shown that by dividing the face into
multiple facial regions to strengthen the feature correspondence, deformation quality
can be improved (Kazemi et al. 2014).

Posture Enhancement

The body tracked by depth sensors may contain inaccurate body parts due to
different types of error. Simple sensor error can be caused by geometry shape of
body parts and viewing angles. It is proposed to apply Butterworth filter (Bailey and
Bodenheimer 2012) or a simple low-pass filter (Fern’ndez-Baena et al. 2012) to
smooth out the vibration effect of tracked positions due to this type of error.
However, when occlusions occur, in which a particular body part is shield from
the camera, the tracked body position would contain a large amount of error. Simple
filter will not be sufficient to correct these postures.

As a solution, it is proposed to utilize accurately captured 3D human motion as
prior knowledge and reconstruct the inaccurate postures from the depth sensor. In
this method, a motion database is constructed using carefully captured 3D motion,
usually with optical motion capture systems. Given a depth sensor posture, one can
search for a similar posture in the database. The missing or error body parts from the
depth sensors can be replaced by those in the corresponding database posture (Shum
and Ho 2012). However, such a naive method cannot perform well for complex
posture, as using only one posture from the database cannot always generalize the
posture performed by the user, and therefore cannot effectively reconstruct the
posture.

More advanced posture reconstruction algorithms utilize machine learning to
generalize posture information from the motion database (Chai and Hodgins 2005;
Liu et al. 2011; Tautges et al. 2011). In particular, the motion database is used to
create a low dimensional latent space by dimensionality reduction techniques. Since
the low dimensional space is generated using data from real human, each point in the
space represents a valid natural posture. Given a partially mistracked posture from a
depth camera, one can project the posture into the learned low dimensional space and
apply numerical optimization to enhance the quality of the posture. The optimized
result is finally back-projected into a full body posture. Since the optimization is
performed in the low dimensional latent space, the solution found should also be a
natural posture. In other words, the unnatural elements due to sensor error can be
removed. The major problem of this method is that the system has no information
about which part of the body posture is incorrect. Therefore, while one would expect
the system to correct the error parts of the posture using information from the
accurate parts, the actual system may perform vice versa. As a result, the optimized
posture may no longer be similar to the original depth sensor input.

To solve the problem, optimization process that considers the reliability of
individual body part is proposed (Shum et al. 2013). The major difference from
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this method comparing with prior ones is that it divide the posture reconstruction
process into two steps. In the first step, a procedural algorithm is used to evaluate the
degree of reliability of individual body parts. This is by accessing the behavior of a
tracked body part to see if the position of the part is inconsistent, as well as accessing
the part with respect to its neighbor body parts to see if it creates inconsistent bone
length. In the second step, posture reconstruction is performed with reference to this
reliability information, such that the system relies on the more parts with higher
reliability. Essentially, the reliability information helps the system to explicitly use
the correct body parts and reconstruct the incorrect ones. Such a system can be
further improved by using Gaussian process to model the motion database, which
helps to reduce the amount of motion data needed to reconstruct the posture (Liu
et al. 2016b; Zhou et al. 2014). Better rules to estimate the reliability of the body
parts can also enhance the system performance (Ho et al. 2016).

Figure 5 shows the result of applying posture reconstruction. The color and depth
images show that the user is occluded by a chair and the surrounding environment.
The yellow skeleton on the left is the raw posture obtained by Kinect, in which less
reliable body parts are highlighted in red. The right character shows the
reconstructed posture using the method proposed in (Shum et al. 2013). The
awkward body parts are identified and corrected using the knowledge learned from
a motion database.

Prior Knowledge

The major research focus of face and posture enhancement is to apply appropriate
prior knowledge to improve data obtained in rum-time. In machine learning-based

Fig. 5 Applying posture reconstruction to enhance the quality of the obtained data
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algorithms, such prior knowledge is usually learned from a database and represented
in a format that can be efficiently used in run-time.

For motion enhancement, since human-motion is highly nonlinear with large
variation, it is not effective to represent the database using a single model. Instead,
many of the existing research apply multiple local models to represent the database,
such as using a mixture of Gaussian model (Liu et al. 2016b). It is also proposed to
apply deep learning to learn a set of manifolds that represents a motion database
(Holden et al. 2015). Precomputing these models and manifolds are time-consuming,
as it involves abstracting the whole database. Therefore, lazy learning algorithm is
adapted, in which modeling of the database is not done as a preprocesss but as a
run-time process using run-time information (Chai and Hodgins 2005; Shum
et al. 2013). During run-time, based on the user-performed posture, the system
retrieves a number of relevant postures from the database and models such a subset
of postures only. This method has two advantages. First, by modeling only a small
number of postures that are relevant to the performed posture, one can reduce the
computational cost of constructing a latent space. Second, since the subset of
postures are relatively similar, one can assume that they all lay in a locally linear
space and apply simpler linear dimensionality reduction to generate the latent space.
This allows real-time generation of the latent space. With improved database orga-
nization, the database search time can be further reduced and the relevancy of the
retrieved results can be enhanced (Plantard et al. 2016a, b), such that real-time
ergonomic and motion analysis applications can be preformed (Plantard
et al. 2016b).

Figure 6 visualizes how prior knowledge can be estimated from database. Each
blue circle in the figure represents a database entry, and the filling color represents its
value. The obtained prior knowledge from the scattered database entries is
represented by the shaded area, which enables one to understand the change of
value within the considered space. The left figure shows a traditional machine
learning algorithm, in which prior knowledge is obtained as a preprocess, consider-
ing all database entries. During run-time, when a query arrives, the system uses the
knowledge to estimate the corresponding value of the query. The right figure shows
the case of lazy learning, in which prior knowledge is obtained during run-time. This
allows the system to extract database entries that are more similar to the query and
estimate the prior knowledge with only such a subset of data.

Depth Camera-Based Applications

With depth sensors, it becomes possible to consider the user posture as part of an
animation system and create real-time animation. Here, we discuss on some depth
sensors-based animation control systems and point out the challenges and solutions.

Producing real-time facial animation with depth sensors is efficient. By
representing the facial features with a deformed template, it is possible to drive the
facial expression of virtual 3D faces (Li et al. 2013; Weise et al. 2011). Due to the
different dimensions between the faces of the user and the character, directly
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applying facial features such as landmark locations generates suboptimal results. The
proposed common template acts as a bridge to connect the two ends. Such a template
is a parametric representation of the face, which is more robust against difference in
dimensions. With the template, it becomes possible to retarget the user’s expression
onto the character’s face.

Typical real-time animation systems such as games utilize a motion database to
understand what the user performs and renders the scenario accordingly. For exam-
ple, one can compare the user performed motion obtained from depth sensors with a
set of motion in the database and understand the nature of the motion as well as how
it should affect the real-time render (Bleiweiss et al. 2010). Alternatively, with an
interaction database, one can generate a virtual character that acts according to the
posture of the user, in order to create a two character dancing animation, which is
difficult to be captured due to hardware limitation (Ho et al. 2013).

While it is possible to utilize the posture captured by depth sensors for driving the
animation of virtual characters, the generated animation may not be physically
correct and dynamically plausible. On the one hand, since the depth sensors track
kinematic positions only, there is no information about the forces exerted. It is
proposed to combine the uses of depth cameras with pressure sensors and estimate
the internal joint torque using inverse dynamics (Zhang et al. 2014b). This allows
simulating virtual characters with physically correct movement. On the other hand,
while depth sensors can track the body parts positions, it is relatively difficult to track

Fig. 6 (Upper) Traditional machine learning that represents the prior from the whole database.
(Lower) Lazy learning that represents the prior from a subset of the database based on the online
query
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how the body deforms dynamically during the movement. Therefore, it is proposed
to enhance the realism of the generated character by applying real-time physical
simulation onto Kinect postures (Iwamoto et al. 2015). This allows the system to
synthesize real-time dynamic deformation, such as the jiggling of fresh, based on the
movement obtained in real-time, as shown in Fig. 7.

Utilizing depth cameras, user can interact with virtual objects with body motion.
On the one hand, predefined hand and arm gestures can be used to control virtual
objects. Once the Kinect has detected a set of specific gestures, a 3D virtual object
can be fitting onto the user and move according to the user’s gesture (Soh
et al. 2013). On the other hand, the virtual objects can be attached on the user’s
body and move with the user’s posture, such as carrying a virtual handbag (Wang
et al. 2012).

Depth sensors fuse a new application known as the virtual fitting, in which the
shopping experience can be facilitated by letting customers to try on virtual clothing.
This allows mix-and-match of clothes and accessories in real-time without being
physically present in the retail shop. The system involves building a 2D segmented
clothing database indexed by the postures of the user. During run-time, the system
searches for suitable database entries and overlays them on the customers fitting
image (Zhou et al. 2012). Another clothes fitting method is to utilize a 3D clothing
database and obtain 3D models of the user with depth sensors. This allows the
system to recommend items that fits with the user’s body (Pachoulakis and
Kapetanakis 2012).

Conclusion

In this chapter, we explained how depth sensors are applied to gather human facial
and body posture information in generating and controlling animations. Depth
sensors obtain human information in real-time and provide a cheaper alternative
for human motion capturing. However, there are still rooms to improve the quality of
the obtained data. In particular, depth sensors suffer heavily from occlusions, in
which part of the human body is shield. Machine learning algorithms can reconstruct
the data and improve the quality, but more research is needed to solve the problem.
Depth sensors fuse many interesting applications in the computer animation and

Fig. 7 Real-time dynamic deformed character generated from Kinect postures
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games domains, providing real-time control on animation creation. Given the rate of
new depth sensors research and applications, such a technology can become an
important part of the daily life in the near future.
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