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The supplementary material for our work is structured
as follows: First, Sec. A provides results for our ablation
experiments including latent code sizes, codebook length
and number of input views. Next, in Sec. B we present
additional qualitative results showcasing: MedNeRF com-
parison, using out-of-distribution inputs, training on binary
data, data augmentation details, and sampling using the au-
toregressive method. Finally, Sec. D includes code snippets
for both the conditional diffusion process and for sampling
from our model.

A. Ablations
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Figure 1. Comparison of reconstruction quality using different
latent code sizes on the two datasets. 3D latents (ablation) cor-
respond to the 3D VQ-VAE and 2D latents (fixed) to the 2D VQ-
VAE. The chest dataset shows faithful reconstruction even with
a small size, whereas the baggage security screening dataset re-
quires a more complex latent representation. Larger latent code
sizes could allow the model to learn more complex structures (bag-
gage case) or mislead to learn unhelpful features (chest case).

↓ NLL

Latent code sizes Chest Baggage

8 × 8 × 8 0.031 0.0087
16 × 8 × 8 0.032 0.0056
8 × 16 × 16 0.029 0.0055

16 × 16 × 16 0.032 0.0044
16 × 16 × 32 0.067 0.0056

Table 1. Quantitative evaluation based on validation Negative Log-
Likelihood (NLL) using different latent code sizes for the discrete
representations learned by the VQ-VAEs in Stage 1 of our ap-
proach.

Codebook, argmin(x,B)

Length Chest (10−3) Length Baggage (10−5)

64 4.01 1024 5.8
128 0.85 2048 4.2
512 0.65 4096 1.7

Table 2. Quantitative evaluation based on the codebook loss using
different codebook lengths for the discrete representations learned
by the VQ-VAEs in Stage 1 of our approach. Our approach al-
lows learning complex data distributions (e.g. baggage security
dataset) by increasing the length. For our main experiments we
used a length of 512 and 4,096 for the chest and baggage dataset,
respectively.
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1.163 0.930 0.929

Figure 2. Ablation using different number of input 2D views
for conditional 3D modeling on the LIDC-IDRI (chest) dataset.
While increasing the number of inputs views from 2 to 4 brings
additional performance, further increments don’t necessarily result
in linear returns. For our main experiments we used only 2 inputs
views for both datasets.
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Baggage Security Screening LIDC-IDRI (chest)

Figure 3. Comparison of Biplanar Maximum Intensity Projections (MIP) on the baggage security screening dataset and on LIDC-IDRI
(chest) dataset. (a) denotes the MedNeRF model, (b) CCX-rayNet and (c) X2CT-GAN.
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Figure 4. Absorbing diffusion vs autoreggressive samples on
out-of-distribution input X-rays. We test our model on different
distributions including pediatric and lung cancer X-rays with dif-
ferent radiographic contrast (high and low contrast).

B. Additional Results
2D Comparison Fig. 3 contains qualitative results for
both datasets of the 2D evaluation that also includes the
MedNeRF method, which renders 3D-aware CT projec-
tions. This evaluation consists of comparing Maximum
Intensity Projections from the spatial dimensions. Our
method allows faithful samples compared to competing
methods. Specifically, our samples better highlight denser
objects which are of particular interest in the detection of
prohibited items.
Diffusion comparison We test our model robustness on
out-of-distribution input X-rays and generate samples com-
paring absorbing diffusion and the autoregressive method
using the same transformer architecture. Despite domain
differences, our model is able to generate accurate samples
without requiring any kind of domain supervision, suggest-
ing that our learned discrete representations achieve effec-
tive compression to remain invariant to low-level features
like contrast while encoding essential structures such as
bone and soft tissue (Fig. 4).

Figure 5. Visualization of additional results on ShapeNet [3].
Training on binary volumetric data in contrast to continuous in-
tensities isn’t trivial as it might lead to instabilities in architectures
like simple CNN-based GANs. Voxels with values other than 0
or 1 are flagged as fake by the discriminator, hindering preventing
continuous optimization [1]. However, our model can effectively
learn this type of data as our approach doesn’t (necessarily) rely
on adversarial training.

C. Controlled Data Augmentations

To avoid overfitting, we extended the stochastic discrim-
inator augmentation framework from StyleGAN2-ADA [2]
to handle 3D data. This solution involves augmenting both
real and generated data by the VQ-VAE using a set of style
and spatial augmentations with a probability p < 1. Unlike
other data augmentation strategies, non-invertible augmen-
tations can be incorporated with an adaptive p-value based
on an overfitting heuristic. We found that this prevents the
discriminator becoming more confident, and thus both real
and fake predictions take more time to diverge. As a result,
the VQ-VAEs to learn richer representations while delay-
ing the drop in its the validation accuracy. Note that our
approach doesn’t rely on adversarial training, thus, the in-
corporation of a discriminator is optional.



D. Example Code
We include python-like code for training a conditional

absorbing diffusion process Fig. 6a, and sampling from our
2D to 3D translation model Fig. 6b. The use of a Trans-
former allows the learned distribution to be easily condi-
tioned on arbitrary input shapes, by simply concatenating
the conditioning signal with the noisy data. The linear
masking schedule allows sampling with smaller numbers
of steps, to speed the process up, by simply passing in a
smaller value for T .

def diffusion_training_loss(c_0, Z, T, mask_id):
c_t, b = c_0.clone(), c_0.size(0)
# Randomly sample diffusion time steps
t = torch.randint(1, T+1, (b,))
# Randomly mask tokens with probability t/T
mask = torch.rand_like(c_0) < (t / T)
c_t[mask] = mask_id
# Calculate p(c_0 | c_t, Z)
logits = Transformer(torch.cat(Z, c_t))
# Calculate reweighted ELBO loss
loss = cross_entropy(logits, c_0) * (T-t+1)/T
return loss

(a) Python-like code snippet for training a conditional Absorbing Diffusion
model.
def sample(imgs_2d, T, mask_id, latent_size):

b = imgs_2d.size(0)
# Compress 2D images with 2D VQ-Encoder
Z = vqae_2d.encoder(imgs_2d)
# Initialise 3D latents with all masks
c_t = torch.full((b, latent_size), mask_id)
# Track which latents have been unmasked
unmasked = torch.zeros_like(c_t, dtype=bool)

# Loop over sampling steps
for t in reversed(list(range(1, T+1))):

# Randomly choose where to unmask
changes = torch.rand(c_t.shape) < 1/t
# Don't unmask anywhere already unmasked
changes = torch.bitwise_xor(changes, \

torch.bitwise_and(changes, unmasked))
# Update unmasked
unmasked = torch.bitwise_or(unmasked, changes)

# Sample from p(c_{t-1} | c_t, Z)
logits = Transformer(torch.cat(Z, c_t))
dist = Categorical(logits)
c_0_hat = dist.sample()
c_t[changes] = c_0_hat[changes]

# Decompress 3D latents with 3D VQ-Decoder
imgs_3d = vqae_2d.decoder(c_t)
return imgs_3d

(b) Python-like code snippet for 2D to 3D translation using our approach.
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