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Figure 1: Two examples of reconstruction: (a) 2D images, (b) ground truth 3D point cloud, and (c) reconstructed 3D point cloud.

ABSTRACT
We propose a novel end-to-end deep learning framework, capable
of 3D human shape reconstruction from a 2D image without the
need of a 3D prior parametric model. We employ a “prior-less”
representation of the human shape using unordered point clouds.
Due to the lack of prior information, comparing the generated and
ground truth point clouds to evaluate the reconstruction error is
challenging. We solve this problem by proposing an Earth Mover’s
Distance (EMD) function to find the optimal mapping between
point clouds. Our experimental results show that we are able to
obtain a visually accurate estimation of the 3D human shape from a
single 2D image, with some inaccuracy for heavily occluded parts.
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1 INTRODUCTION
In this paper, we tackle the problem of 2D to 3D reconstruction.
Previous work in this field typically makes use of strong prior
knowledge of plausible 3D human shapes [Chen et al. 2010; Loper
et al. 2015; Zhou et al. 2010]. However, due to the complex geometry
of the human body, and the large variety in human body size, using
only a parametric model cannot precisely recover all of the details
relating to human body shape.

We propose that the shape can be represented by directly gener-
ating a "prior-less" unordered point cloud. In order to facilitate the
use of an unordered point cloud, we need to be able to measure the
distance between the reconstructed points and the ground truths.
Motivated by [Henry et al. 2012; Shen et al. 2019], we propose a
novel loss function that incorporates the Earth Mover’s Distance
(EMD) to determine the optimal alignment between two point cloud
distributions. In this paper, we present the following contributions:

• An end-to-end deep learning framework for 3D human shape
reconstruction from a 2D image without the need for a 3D
prior parametric model.

• A novel loss function based upon EMD [Shen et al. 2019] to
evaluate the distances between unordered 3D point clouds
representing human body shapes.

• A synthetic pairwise 2D and 3D dataset to train our deep
learning framework inspired by [Zhang et al. 2016].
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2 THE RECONSTRUCTION NETWORK
We propose a deep architecture that has strong representation
ability and makes use of the statistics learned from the associated
geometric data. Given an input image S and a random vector t , the
network reconstructs a 3D point cloudMr through a CNN encoder
and a fully-connected regressor.

To model the uncertainty of the input image, we propose the
incorporation of a random perturbation vector t as a part of the
input, together with the input image S [Moosavi-Dezfooli et al.
2017]. The core of the network consists of a CNN encoder and
a fully-connected regressor. The encoder is able to understand
the features of images, while the regressor can capture complex
structures to generate the corresponding 3D point cloud. As we
do not enforce prior knowledge, we use an unordered point cloud
set M = (xi ,yi , zi )

N
i=1 to represent the 3D shapes, where N is a

predefined constant that represents the number of points in the
point cloud.

We define the ground truth as a probability distribution P(·|S)
over the shapes conditioned on the input 2D image S to model the
uncertainty from 2D to 3D. We train a deep neural network G as a
conditional sampler from P(·|S):

M = G(S, t ;θ ), (1)

where θ denotes the network parameter, and t ∼ N (0, I ) is the afore-
mentioned random vector used to perturb the input. During testing,
multiple samples of t are used to generate different predictions.

The encoder is composed of a combination of ReLU and convo-
lution layers. It maps a random vector t and the input image S into
a subspace. By using MoN (min of N) to model the uncertainty, the
network can change its prediction based upon different random
vectors. The regressor generates the 3D shape as an N × 3 matrix,
where each row represents the coordinates of one vertex.

3 THE EMD-BASED LOSS FUNCTION
While the use of an unordered point cloud frees the system from
relying upon any priors, it is challenging to compare two unordered
point clouds due to the lack of correspondence. Such a comparison is
required when we build the reconstruction loss function. Motivated
by [Henry et al. 2012; Shen et al. 2019], we propose the use of EMD
in our deep learning loss. EMD evaluates the minimum overall
distance between two point clouds by finding the optimal mapping
between them. It optimizes a set of unidirectional flows to map the
points. The loss function is defined as:

L(Mr ,Mдt ) = dEMD (Mr ,Mдt ), (2)

whereMr is the reconstructed 3D human shape,Mдt is the ground
truth of each sample, dEMD is the EMD calculated as:

dEMD (M1,M2) = min
ϕ :M1→M2

∑
x ∈M1,y∈M2

| |y − ϕ(x)| |2, (3)

whereM1,M2 ∈ R3 has equal size,m = |M1| = |M2| and ϕ : M1 →
M2 is a bijection (i.e. flows), | | | |2 represents the root mean square
point to point distance. With the EMD-based loss function, the sys-
tem can effectively evaluate the distance between the synthesized
human shape and the ground-truth for backpropagation during
training.

Figure 2: Different possible shapes for the same image.

4 PRELIMINARY EXPERIMENTAL RESULTS
Fig.1 shows the point cloud reconstructed by our system compared
with the ground truth. Both examples show that our reconstructed
point cloud resembles the body shape with the correct posture.

Fig. 2 shows that, due to the inclusion of a random vector, the
same input image can have multiple plausible 3D shapes. Whilst
there are small variations, the depth information is generally con-
sistent and the overall posture provided is a good representation.

Our qualitative evaluations also suggest that the accuracy de-
creases as the amount of occlusion increases. We also observe that
the presence of occluded body parts may affect other body parts
which are not occluded. This is likely due to the EMD function
attempting to find the optimal mapping for the whole body.

5 CONCLUSION AND DISCUSSIONS
In this paper, we propose an EMD-informed CNN framework for 2D
to 3D point cloud reconstruction. Unlike the majority of previous
works, we experiment with a setup in which there is no prior-
knowledge. Our EMD function successfully solves the problem of
using an unordered point cloud for prior-less human shape repre-
sentation. Furthermore, to enable sufficient high-quality training
data, we employ a computer graphics pipeline to generate syn-
thetic training data. Our preliminary results suggest that the use
of EMD demonstrates high potential in matching two prior-less
point clouds. However, when multiple joints are close together or
occluded, the system has problems identifying which body parts
the points should belong to.
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