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Abstract
Sample diversity depends on the task; within
mathematics, precision and determinism are
paramount, while storytelling thrives on cre-
ativity and surprise. This paper presents a sim-
ple self-regulating approach where we adjust
sample diversity inference parameters dynami-
cally based on the input prompt—in contrast to
existing methods that require expensive and in-
flexible setups, or maintain static values during
inference. Capturing a broad spectrum of sam-
ple diversities can be formulated as a straight-
forward self-supervised inference task, which
we find significantly improves the quality of re-
sponses generically without model retraining or
fine-tuning. In particular, our method demon-
strates significant improvement in all supercat-
egories of the MMLU multitask benchmark
(GPT-3.5: +4.4%, GPT-4: +1.5%), which cap-
tures a large variety of difficult tasks covering
STEM, the humanities and social sciences.

1 Introduction

Large language models (LLMs) and the broader
class of foundation models, such as GPT-3 (Brown
et al., 2020) and GPT-4 (OpenAI, 2023), learn a
distribution over large datasets that can be sam-
pled with guidance prompts. These models have
shown remarkable capabilities across tasks with-
out specialised training (Bubeck et al., 2023),
where innovative prompting strategies can even
outperform special-purpose tuning, improve rea-
soning (Li et al., 2023), and potentially remove the
need for expert-curated content (Nori et al., 2023).

However, these models employ stochastic sam-
pling from the probabilities predicted by the
model to generate responses (Holtzman et al.,
2020), which is arguably both their weakness and
strength—to quote Karpathy “An LLM is 100%
dreaming and has the hallucination problem. A
search engine is 0% dreaming and has the creativ-
ity problem.” This presents an inevitable trade-
off (Zhang et al., 2021). In this paper, we continue

the trend of innovative prompting strategies (Nori
et al., 2023), and ask whether models can self-
regulate their sample diversity given this trade-off.
Intuitively, it is an easy problem to assess whether
a task should be approached logically or creatively.

Notably, the “unreliable tail” is to blame for de-
generate responses, leading to sampling approaches
that control the shape of the distribution, suppress-
ing this unreliable distribution tail (Holtzman et al.,
2020). Most popularly, “top-p” (nucleus sampling),
“top-k” (Fan et al., 2018) and “temperature τ” pa-
rameters select likely points from the distribution,
where τ skews the softmax weights. Increasing
τ > 1 gives more uniform (random) probabilities
and τ < 1 sharpens the distribution, increasing
the likelihood of predictable (non-diverse) samples.
The “frequency” and “presence” parameters also
penalise repeated tokens or promote tokens that
have not yet occurred in the text accordingly, im-
plicitly altering the diversity of completions.

Approaches to managing sample diversity in lan-
guage models, such as large-scale transformers,
often rely on fixing these parameter values (Brown
et al., 2020) or employ learned context (Keskar
et al., 2019) and fine-tuning (Ziegler et al., 2019).
However, the current adaptive methods are often
expensive and inflexible, requiring bespoke solu-
tions for specific contexts or auxiliary training that
is not suited for foundation models.

In contrast, we introduce a simple prompting
strategy that dynamically adjusts diversity parame-
ters based on the input task context, without requir-
ing retraining, auxiliary networks or fine-tuning.
The primary contributions of this approach there-
fore lie in its simplicity, adaptivity, and ease-of-
use—where it is directly applicable to foundation
models and complements other strategies.

In particular, we find that our method demon-
strates marked improvement across the MMLU
benchmark (Hendrycks et al., 2021) evaluated for
GPT-3.5 (+4.4%) and GPT-4 (+1.5%) models.
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Figure 1: For a given task x = “The cat sat on the”, we guide the LLM fθ to generate a string of diversity parameters
s = “τ = 0.7, ...”, which are then injected back into the subsequent sampling of fθ before completing the task x.

2 Related work

Sample diversity and prompting strategies are ac-
tive research fields (Liu et al., 2023). Here, we
categorise related literature according to the way
the model distribution is sampled, including static,
learned, and task-dependent approaches, and also
we review the wider societal impact of sample di-
versity and amplification effect of model biases.
Static sampling A significant portion of prior
work focuses on static sampling methods (Holtz-
man et al., 2020), predominantly with fixed diver-
sity parameter settings such as for temperature and
top-k sampling (Fan et al., 2018) and top-p nucleus
sampling (Holtzman et al., 2020). While clearly
effective, these methods lack the flexibility to adapt
to varying task requirements; it is difficult to find
the balance between excessively repetitive answers
(such as repeated tokens in mathematics) or exces-
sive randomness in the model outputs.
Learned heuristic and conditioned models
More recent studies have explored learned heuristic
approaches for sampling diversity, such as by ad-
justing sampling according to the model (Dathathri
et al., 2020). Similarly, generation can be learned
in a conditioned way (Ficler and Goldberg, 2017)
that controls style, content and task-specific be-
haviour (Keskar et al., 2019); however, these meth-
ods can be expensive with more limited adaptivity
and applicability with large foundation models.
Context-dependent sampling Researchers have
recognized the need for context-specific adjust-
ments to the model sampling parameters; prompt
engineers have developed cheat sheets (OpenAI
Developer Forum contributors, 2023) and API sam-
pling guidance (ChatGPT OpenAI API Plugin con-
tributors, 2023) over a variety of tasks. As ex-
pected, the creative writing tasks have been empiri-
cally observed to benefit from higher sampling tem-
peratures than coding tasks. Discovering the best

prompts for tasks is a challenging problem; Yang
et al. (2023) optimized to discover the compelling
instruction of “take a deep breath and work on this
problem step-by-step” that scores highly. Diversity
can be controlled in more specific contexts with
bespoke solutions (Zhao et al., 2023; Gupta et al.,
2022). Within the task of source code generation,
Zhu et al. (2023) employs an adaptive temperature
sampling heuristic based on the location of tokens
within a code block. While effective, these strate-
gies lack the adaptability that our work introduces.
Diversity within other modelling approaches
and data modalities Other modelling ap-
proaches besides autoregressive next token predic-
tion involve trade-offs in terms of mode coverage,
modelling quality and sampling costs (Xiao et al.,
2022; Bond-Taylor et al., 2021). For example, sam-
pling low temperatures from models trained on the
FFHQ image dataset yields batches of 20-30 year
old males with plain white backgrounds and short
brown hair, as shown in Figure 6 in Bond-Taylor
et al. (2022). Prompt guidance enables greater mod-
elling fidelity, where model hyperparameters sig-
nificantly impact creative outputs (Rombach et al.,
2022).
Societal impact and bias amplification The
widespread use of generative AI, such as in deci-
sion making, have a significant impact on society,
reinforcing stereotypes and perpetuating inequal-
ities (Noble, 2018), particularly in critical areas
such as employment, law enforcement, credit scor-
ing, and healthcare (Hollis, 2017; Angwin et al.,
2022; Buolamwini and Gebru, 2018; Eubanks,
2018). Often serving as echo chambers to con-
firmation bias (Rastogi et al., 2022), discrimination
can be amplified and further compounded with hu-
man oversight (Lyell and Coiera, 2017).

Getting diversity right matters not just for better
task performance, but because of the impact these
outputs can have on society by the amplification



of biases present in the original data (Lloyd, 2018).
When discrimination is baked into training sets,
we must take steps not only to not amplify this
discrimination, but to actively mitigate against it
(Hall et al., 2022; Panch et al., 2019) motivating
adaptable strategies that can respond quickly to
newly identified issues.
Reflection In summary, there is a trend towards
innovative prompting strategies (Liu et al., 2023)
that offer advantages in terms of flexibility, soci-
etal adaptivity and low training costs, potentially
outperforming special-purpose tuning and expert-
curated equivalents (Nori et al., 2023), indicating
the opportunity for an adaptive diversity strategy
based on prompted guidance.

3 Methodology

Given a LLM fθ with alphabet tokens Σ =
{possible characters} trained on strings Σk =
{s1, s2, . . . , sk : si ∈ Σ}, we wish to self-regulate
the sample diversity of fθ based on the context
of the prompt. We hereon use “sample diversity”
as an umbrella term covering the likelihood and
randomness of the model outputs, as well as other
factors such as their repetition in the text.

The sample diversity is adjustable at inference
via a set parameters w = [w1, w2, . . . , wn] (in
our experiments temperature τ , top-p, ‘frequency’
penalty, and ‘presence’ penalty are used). However,
these are best tuned according to the task, which
is an ill-defined problem subjective to the current
world state, i.e., societal biases, which may have
changed since the LLM fθ was trained. Therefore
we wish to specify w at inference.

To achieve this, we introduce a guidance prompt
g = g1, g2, . . . , gk (such as “based on the follow-
ing prompt, choose the temperature. . . ”, which is
concatenated with the task x = x1, x2, . . . , xm
(such as “solve this equation. . . ”, or “write a
poem. . . ”), thus guiding the specification of w
based on x.

More formally, we first generate a string s of
parameter values in consideration of the task:

s =

end⊕
i=1

(si ∼ fθ(si|g,x, s1:i−1;w = winit)) ,

(1)
where ⊕ denotes concatenating the guidance
prompt outputs to form the current string of pa-
rameter estimates s = s1, s2, . . . , sn, such as
“τ=0.2, top-p=1, freq=0, pres=0” until an end-of-
text token is reached or the maximum length is

reached. We then extract the updated parameter
values w′ ∈ Rn from this output string s by the
function Ψ : Σk → Rn where

w′ = Ψ(s). (2)

In other words, the model output is converted to a
real vector w via Ψ. Then, we continue the prompt
(and solve the task) using the updated diversity
parameters w′, giving

p(x) =

n∏
i=1

fθ(xi|x1, . . . , xi−1;w = w′). (3)

Notably, the subsequently generated text is not
biased by the guidance prompt, although the di-
versity parameters remain constant until the model
sampling is completed.

The proposed approach is formulated in the
pseudo code Algorithm 1:

Algorithm 1: Self-Supervised Sample
Diversity Inference
Input: Model fθ, task x, initial diversity

parameters winit, guidance prompt g
Output: Updated diversity parameters w′

▷ Initialize string s for the new parameters
s← “”
while not end-of-text do

▷ Sample next parameter token
si ∼ fθ(si|g,x, s1:i−1;w = winit)
▷ Concatenate sampled parameter to s
s← s⊕ si
i← i+ 1

▷ Extract updated diversity parameters from
the parameter string s

w′ ← Ψ(s)
return w′

3.1 Continual diversity updates
While the proposed method is straightforward to
implement, and samples x are not influenced by g,
it is unable to change diversity “on the fly”. For
example, the task prompt x may have mixed diver-
sity requirements, such as “solve y = 100 × 100,
then write a poem about it”. In such a case, we may
desire low diversity for the first part of the answer
and high diversity with obscure words for the latter.

To handle this scenario, we can instead prompt
g the LLM to provide syntax during generation,
which Ψ continually monitors, that triggers a di-
versity parameter update. For example, g =



Supercategory Humanity STEM Social Sciences Other Total
(# Datasets) (13) (19) (12) (13) (57)

G
PT

-3
.5 Vanilla (bl) 0.628±0.146 0.455±0.155 0.685±0.132 0.620±0.143 0.581±0.172

+ Our Method 0.651±0.157 0.512±0.147 0.706±0.139 0.660±0.135 0.618±0.164
CoT + 5shot (bl) 0.658±0.152 0.579±0.143 0.739±0.089 0.653±0.129 0.648±0.145
+ Our Method 0.692±0.166 0.638±0.140 0.749±0.084 0.715±0.128 0.692±0.141

G
PT

4 CoT + 5shot (bl) 0.823±0.094 0.809±0.070 0.878±0.099 0.826±0.140 0.830±0.104
+ Our Method 0.839±0.090 0.822±0.072 0.904±0.092 0.831±0.140 0.845±0.104

Table 1: Average accuracy and standard deviations for GPT-3.5 and GPT-4 models across MMLU task categories.
Bold results highlight the improvements and ‘(bl)’ denotes the baseline model.

“specify (#tau=0.5,#top-p=1,...) during
generation to update the parameters”.
When such syntax is detected during model sam-
pling, subsequent generation is halted and the pa-
rameters are updated dynamically and immediately
before resuming generation.

However, this variation means that the subse-
quent generated text is influenced by g, which may
be undesirable:

p(x) =

n∏
i=1

fθ(xi|g, x1, . . . , xi−1;w
t). (4)

In practice, we find the approach in equations 1–3
sufficient for general use with current models.

4 Experiments

Our experiments were conducted on the Mas-
sive Multitask Language Understanding (MMLU)
dataset, a benchmark comprising 57 tasks across di-
verse domains and grouped into 4 supercategories:
Humanity, STEM, Social Sciences, and Other. The
multitask tests encompass a total of 14,079 multi-
ple choice questions, with each subject containing
at least 100 test examples (Hendrycks et al., 2021).
This diversity in content and structure provides a
comprehensive platform for assessing the effective-
ness of our proposed method over many areas.

4.1 Experimental setup
The baseline for our comparison included the stan-
dard GPT-3.5 and GPT-4 models, in their vanilla
forms and supplemented with CoT reasoning and
few-shot learning (5-shot) techniques. The initial
parameters for diversity estimation task are the
defaults in the OpenAI API, which are winit =
[τ = 1.0, top-p = 1.0, freq = 0.0, pres = 0.0]
for all experiments. We used default values of
max_token in the OpenAI API, which are 16,385

for GPT-3.5-Turbo and 128,000 for GPT-4-Turbo.
MMLU responses, even without CoT, need to be
sufficiently long to facilitate reasoning; the average
output length without CoT is 51.05± 25.27 words
(GPT-3.5) and 84.82± 185.01 words (GPT-4).

4.2 Evaluation

The method demonstrates consistent improvement
in average accuracy across all MMLU task super-
categories, shown in Table 1. For GPT-3.5, the
average accuracy increases from 0.581 to 0.618,
an improvement of 3.7%. With the integration of
Chain-of-Thought (CoT) and 5-shot learning, the
accuracy improved from 0.648 to 0.692, yielding
an increase of 4.4%. In the case of the GPT-4
model, our method increases accuracy from 0.830
to 0.845, an improvement of 1.5%. These findings
highlight the effectiveness of our approach in en-
hancing performance across a varied set of tasks,
while complementing existing strategies.

5 Conclusion and future work

In conclusion, we found that adjusting sampling
parameters contextually based on the prompt sig-
nificantly improves various tasks in different fields.
This follows the trend of advances obtained solely
from the remarkable power of prompting in foun-
dation models, and indicates another piece of early
evidence that sufficiently large models can demon-
strate emerging capabilities of self-evaluation and
self-regulation, possibly indicating to a future tra-
jectory of prompt-driven alignment and improve-
ment. It would be worthwhile exploring this space
further in the future, examining how prompting
strategies can be used to drive performance, align-
ment and bias mitigation—not only during model
inference, but also within model design and train-
ing phases within a continual learning cycle.



6 Limitations

The study scope was limited by the compute costs
required to investigate a broader range of guidance
prompts. Consequently, our exploration into the
variety and optimization of prompts was not com-
prehensive, and we would expect to see further
multitask improvements with more investigation in
this area. In the future, it would be valuable to as-
sess the optimized discovery of guidance prompts
to self-assess diversity, using approaches such as
by Yang et al. (2023). It is worth mentioning that
our approach will not be effective for smaller LLMs
that are unable to few-shot the relatively simple
guidance task. It would also be worth evaluating
the effectiveness of Equation 4 in blended diver-
sity contexts; this could be evaluated by synthet-
ically intersecting MMLU supercategories (solve
two tasks in one prompt), however a large dataset
with intersectional tasks would be preferable.
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A Appendix

This research was implemented using PyTorch,
which uses a permissive BSD-style licence, and
the MMLU dataset, which is available under the
MIT licence.

A.1 Prompts
In our experiments, we used the following human-
generated guidance prompt, which we designed
empirically:
g = “I’m going to ask a question. Based on the

question, please choose suitable OpenAI API sam-
pling parameters "temperature=X" ([0,2] default 1),
"top_p=X" ([0,1] default 1), "presence_penalty=X"
([-2.0, 2.0] default 0) and "frequency_penalty=X"
([-2.0, 2.0] default 0). For example maths should
have more correct non-diverse answers, whereas
prompts about fiction should be more creative and
diverse. Just output the 4 parameters (in float val-
ues). Here is the question:\n\n "{question}" \n”.

After extracting parameters w′, we use the
following settings of prompts to complete tasks:
Baseline:
“Here is a question: ” + {task from MMLU} +
“Choose the correct answer in the format [The
correct answer is: ] from A,B,C,D.”
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CoT:
“Here is a question: ” + {task from MMLU} +
“Please answer this step by step.” + “Choose the
correct answer in the format [The correct answer
is: ] from A,B,C,D.”
Few-shot:
“Here are some examples of questions and
answers: ” + {few shot examples} + “Please
answer this question: ” + {task from MMLU}
+ “Choose the correct answer in the format [The
correct answer is: ] from A,B,C,D.”
CoT with few-shot:
“Here are some examples of questions and
answers: ” + {few shot examples} + “Please
answer this question: ” + {task from MMLU}
+ “Please answer this step by step. Choose the
correct answer in the format [The correct answer
is: ] from A,B,C,D.”

A.2 Complete example
This is a complete example of our approach (Equa-
tion 3) with the MMLU experiments:
Guidance Prompt
“I’m going to ask a question. Based on the ques-
tion, please choose suitable OpenAI API sam-
pling parameters "temperature=X" ([0,2] default 1),
"top_p=X" ([0,1] default 1), "presence_penalty=X"
([-2.0, 2.0] default 0) and "frequency_penalty=X"
([-2.0, 2.0] default 0). For example maths should
have more correct non-diverse answers, whereas
prompts about fiction should be more creative and
diverse. Just output the 4 parameters (in float val-
ues). Here is the question: {task from MMLU}”
Task from MMLU
“If a pentagon P with vertices at (– 2, – 4), (– 4, 1),
(–1, 4), (2, 4), and (3, 0) is reflected across the line
y = x to get a new pentagon, P′, then one of the
vertices of P′ is A. (0, – 3) B. (4, 1) C. (2, 2) D. (–
4, –2)”
Inferred parameters
s = “temperature=0.0 top_p=1 presence_penalty=0
frequency_penalty= 0”
Extracted parameters
w′ = [‘0.0’, ‘1.0’, ‘0.0’, ‘0.0’]
Baseline MMLU task specification with w′

“Here is a question: ” + {task from MMLU} +
“Choose the correct answer in the format [The cor-
rect answer is: ] from A,B,C,D.”
Completion with w′

“To reflect a point across the line y = x, you swap
the x and y coordinates of the point. Let’s apply

this to each vertex of the pentagon P to find the
vertices of the reflected pentagon P′. Original ver-
tices of P: 1. (–2, –4) 2. (–4, 1) 3. (–1, 4) 4. (2,
4) 5. (3, 0) Reflected vertices of P′ (swap x and
y): 1. (–4, –2) 2. (1, –4) 3. (4, –1) 4. (4, 2) 5.
(0, 3) Now let’s compare these reflected vertices
with the options given: A. (0, –3) - Not found in
the reflected vertices. B. (4, 1) - Not found in the
reflected vertices. C. (2, 2) - Not found in the re-
flected vertices. D. (–4, –2) - Found in the reflected
vertices. [The correct answer is: D]”

A.3 MMLU response lengths without CoT
Without CoT, the LLM could in theory just report
a single label, which would make our approach in-
effective. However, in practice, MMLU represents
expert-level tasks that typically require expansion
(generation) to facilitate reasoning in order to solve
the task. Here, we measure the length of the re-
sponses for MMLU supercategories.

Category Length (words)
Humanities 56.64± 35.57
STEM 39.11± 17.69
Social Sciences 52.57± 31.93
Other 45.37± 32.79

Overall 51.05± 25.27

Table 2: MMLU response lengths of GPT-3.5.

Category Length (words)
Humanities 30.15 ± 14.44
STEM 173.39 ± 286.37
Social Sciences 29.38 ± 10.86
Other 61.23 ± 109.78
Overall 84.82 ± 185.01

Table 3: MMLU response lengths of GPT-4.

A.4 Implementation details
A.4.1 Error handling
If the parameter extraction fails (incorrect param-
eter data, inference failure or incorrect parameter
ranges) we simply restart the query. We haven’t
experienced any infinite loops or significant delays
with this in practice. In situations where efficiency
is a priority, the defaults can be used after n restarts.



Figure 2: Comparison of our method across MMLU tasks for base models (left) and with CoT and Fewshot5
additions (right), showing that the method compliments existing strategies. The figure is best viewed zoomed in.



Figure 3: Comparison of our method across MMLU
tasks using GPT-4 with CoT and Fewshot5 additions,
showing that the method compliments existing strate-
gies. The figure is best viewed zoomed in.
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