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Abstract: Alignment of segmented telescopes is essential in creating an effective monolithic8

primary mirror. A fast, two-step piston sensing technique has been developed to enable diffraction-9

limited imaging. Achieving such performance requires a Strehl ratio exceeding 0.8, which10

corresponds to a wavefront RMS error below 32 nm at 𝜆 = 450 nm.11

A machine learning model has been implemented for a four-petal telescope to retrieve piston errors12

directly from PSF images and enable mirror correction. When tested on synthetic misalignments13

drawn from a uniform distribution within ±300 nm ( or ±2𝜆/3), the model improved the mean14

Strehl ratio from a degraded state to 0.95 after one iteration, and to 0.99 after a second iteration.15

An SNR greater than 40 was found sufficient to achieve phasing corresponding to a Strehl ratio16

of at least 0.97.17

Impact Statement18

This study focuses on deployable space optics where satellites have a segmented primary mirror.19

It implements new machine learning architecture consisting of only 12,295 parameters to phase20

piston errors on each segment by analysing PSF images. The model is eight times smaller21

than recent developments [1] yet still predicts misalignments and corrects them to produce22

diffraction-limited PSFs. Being small and compact this procedure is applicable to cubesat and23

smallsat infrastructure, requiring little power or time resources which are valuable for such small24

payloads. This allows repeat alignment when needed, ensuring alignment to sub 𝜆 precision for25

high angular resolution. Also, by aligning in one motion, demands on servo actuators is reduced,26

extending their lifetime and the length of the functionality of the satellite as a whole. This27

innovative machine learning architecture supports the novel designs of deployable space optics,28

allowing more accessible and cost effective usage of satellites for uses in Earth observation,29

communications, and defence to name a few applications. Such novelty and impact reflects the30

key attributes of Optics Express.31

1. Introduction32

Deployable optics are increasingly driving the development of large, segmented space tele-33

scopes. Although the capability of launch vehicles continues to increase [2], the deployment of34

large monolithic mirrors remains impractical due to mass, volume, and structural constraints.35

Segmented primary mirrors consisting of smaller components provide a scalable solution to36

configure large scale mirrors in space. The motivation of increasing mirror size lies within the37

fundamental relationship between diameter and resolving power. In diffraction-limited systems,38

the angular resolution is inversely proportional to the pupil size, which is commonly defined39

by the diameter of the primary mirror. Consequently, larger aperture enable higher resolution40

imaging and improved overall performance. High resolution imaging is critical for applications41

ranging from exoplanet analysis, to Earth observation (EO), where spatial resolution directly42

determines the achievable scientific return. While deployable optics have traditionally been43

associated with flagship missions such as the James Webb Space Telescope (JWST) [3], there is44
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growing interest in extending these technologies to smaller-scale payloads. Notable applications45

are emerging with Cubesats [4–6], and compact satellites in the 1 − 2m class. To overcome46

stringent stowage and volume limitations of launcher fairings, current efforts [7–12] focus on the47

development of innovative deployable mechanisms. Concepts such as ADOT [7] and Supersharp48

[12] are designed to comply with launch vehicle constraints in their stowed configurations and49

subsequently deploy to achieve full aperture on orbit.50

Exploiting the benefits of segmented mirrors requires the precise alignment of all segments to51

within sub-wavelength accuracy. Misalignments arising from mechanical tolerances, thermal52

drift, or launch-induced stress manifest as optical aberrations. Axial displacements and tilts53

introduce piston, tip and tilt (PTT) errors on each segment, resulting in a wavefront error (WFE).54

Coarse segments alignment enables an initial correction of the PTT terms by calibrating the55

telescope using through focus scanning and the overlap of each segment’s point spread function56

(PSF) [7, 13]. Achieving diffraction-limited performance, however, requires extending this57

accuracy to sub-micron levels, which can be evaluated through wavefront sensing [14–16] and58

refined alignment via phase retrieval [17, 18]. Yet, on small satellites, dedicated wavefront59

sensors are often impractical due to size and power constraints. These hardware limitations60

have motivated the development of alternative, data-driven approaches, notably using neural61

networks [1, 7, 19, 20]. Training machine learning (ML) algorithms to analyse PSFs and infer62

the underlying aberrations [21] provides an effective means to reduce WFEs. Such models63

can be trained pre-flight, minimising the need for on-board computation, and offer faster, less64

resource-intensive alternatives to iterative correction methods - an advantage particularly valuable65

for small satellites where power and processing time are limited.66

This study investigates the use of a CNN to analyse PSF images and estimate the corresponding67

aberrations. Previous work, both on ground-based infrastructures [22, 23] and general segmented68

systems [24], has demonstrated the potential of ML techniques for co-phasing segmented69

telescopes. These studies typically employ large, deep networks containing up to millions of70

parameters [25]. Even smaller-scale implementations with around 105 parameters [1] rely on71

complex architectures and controlled environmental conditions (e.g., limited noise).72

In contrast, this work develops a compact model using Keras [26] and TensorFlow, departing73

from the deep network architectures commonly employed in similar studies [1, 19, 22]. While74

the overall computational power available for space applications is increasing, a "light", compact75

model frees up compute capacity for other required processes. This work also builds on the76

conclusions of [1] by investigating the use of both a defocus channel and two wavelength channels77

to break degeneracy (where similar PSFs are produced by different misalignments) and to correct78

larger aberrations. The main motivation in using these techniques is to enable correct phasing in79

one (or two) iterations thereby saving alignment time. By combining targeted data preprocessing80

with a compact, well-designed architecture, comparable—or even superior—correction accuracy81

can be achieved with a substantially smaller model. The resulting network, containing only82

∼ 12,000 parameters, effectively restores diffraction-limited performance while remaining83

efficient enough for deployment in resource-constrained environments.84

A generic segmented telescope model is considered, with each segment controllable in piston,85

tip, and tilt. Section 2 describes the telescope model, PSF simulation process, and data generation86

pipeline. The CNN architecture is also introduced, highlighting key design choices and their87

benefits. The results of model testing are discussed in Section 3, followed by concluding remarks88

and potential directions for future work in Section 4.89

2. Simulations and modelling90

2.1. Telescope Model91

Effective modelling and simulation of segmented telescopes are essential to assess the impact of92

segment misalignments.93
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(a) Supersharp Swan
prototype [12] (b) Segment diagram

Fig. 1. (a) A deployable telescope cubeSat (Supersharp Swan prototype). Four
deployable segments unfold with an extending boom for M2. The pupil function
modelled from the prototype is shown in (b). Each active segment is labelled for easier
reference.

A structure similar to the Swan prototype shown in Fig. 1a is considered, consisting of four94

deployable petals unfolding from the payload sides and an extruded telescopic secondary mirror.95

A detector is positioned in the focal plane between the petals. The petals are represented by an96

aperture defined by a two-dimensional pupil function, as illustrated in Fig. 1b. In the digital97

telescope model, incident light from a source at infinity is collected by the aperture and focused98

on-axis, onto the detector. The system is assumed perfectly stigmatic and modelled as a single99

mirror without a secondary. Field aberrations are neglected, and off-axis displacements are100

represented by a pure wavefront tilt. Under these far-field conditions, the digital telescope follows101

the Fraunhofer diffraction regime [27]:102

PSF(𝑥′, 𝑦′) ∝ |F {𝐴(𝑥, 𝑦) 𝑒𝑖𝜙 (𝑥,𝑦) }|2 where 𝐴(𝑥, 𝑦) = 𝐴0𝑃(𝑥, 𝑦) (1)

103

𝑥′, 𝑦′ and 𝑥, 𝑦 denote the coordinates in the focal and pupil planes, respectively. F represents104

a two-dimensional Fourier transform, 𝜙 the phase error across the aperture, and 𝐴 the amplitude,105

which depends on the nominal amplitude 𝐴0 and the pupil function 𝑃. Eq. 1 is used to obtain106

PSF images from the aperture function 𝐴 with a constant pupil function 𝑃.107

To investigate the effects of petal misalignments, piston, tip, and tilt aberrations are introduced108

as phase errors in the complex electric field, allowing the direct impact of phase on the PSF to109

be evaluated. From the simulated PSF, Strehl ratio is derived as a quantitative metric of optical110

quality, directly related to the near-diffraction-limited performance relevant to this application.111

Each petal is modelled as 100 mm × 100 mm, giving the aperture a total diameter of 300 mm,112

which represents a realistic physical scale consistent with common CubeSat configurations. The113

PSF is computed for a system in which the ratio of the diffraction full width half maximum114

(FWHM) to detector pixel size is 2, i.e. Q = 2 corresponding to 2 pixels per FWHM. This is115

achieved by sampling the aperture (30 pixels) and padding (60 pixels) to obtain the desired116

sampling in the focal plane, which is twice the final detector sampling. Finally, the PSF is binned117

to match the correct detector pixel sampling.118

Figure 2a illustrates the aperture structure under investigation. The nominal PSF, corresponding119

to a Strehl ratio of 1, is shown in Fig. 2b. The individual effects of each aberration are presented120

in Fig. 2c, where tip and tilt errors induce lateral translations of the sub-PSFs (i.e. the PSFs121

of individual segments) across the focal plane. These displacements can be corrected through122
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(a) Four segment aperture (b) Aligned optimal PSF (c) Misaligned PSF due to PTT

Fig. 2. Simulation of the four petal telescope as an aperture function. (a) shows the
physical aperture plane of the segments. For no incident phase aberrations, the PSF
remains optimal (b), with (c) showing the effects of misaligned segments through
translation and interferences of sub-PSFs. Colour bars indicate maximum intensity,
normalised to the nominal PSF in (b). 𝜆 = 450 𝑛𝑚.

independent segment motions to realign and overlap the sub-PSFs, thereby merging the four sub-123

PSFs into a single one. Relative piston errors produce the most significant degradation, distorting124

the image and generating fringe patterns due to coherent interference between segments. Proper125

co-phasing of all segments requires precise overlap of the sub-PSFs and complete elimination of126

piston errors.127

Standard alignment procedures are typically classified as ’coarse’ or ’fine’, with coarse128

alignment addressing piston errors on the order of ∼ 𝜆/2 RMS or larger, and fine alignment129

targeting residual piston errors in the range of 𝜆/10–𝜆/20 RMS. In this study, a pre-alignment130

step is assumed, during which severely degraded sub-PSFs are first brought to focus through131

piston adjustment and subsequently overlapped by nulling tip and tilt aberrations. From this132

stage, only piston errors are corrected using a two-step procedure: an initial coarse correction133

that reduces the WFE to better than ∼ ±𝜆/10 RMS, followed by a fine correction phase that134

achieves sub-diffraction-limited performance.135

Fig. 3. Schematic flowchart of model implementation. A coarse and fine model will be
separately trained, then used on randomly generated piston and PSF data. Resulting
metrics will be analysed for performance checks.

The flowchart in Fig. 3 illustrates the procedure followed in this study. The training of coarse136

and fine models is integrated into a two-step correction framework. Random piston aberrations137

and their corresponding PSF images are generated as input data for the two ML models, which138

are trained sequentially, first on larger piston values of ±300 nm, followed by finer corrections139
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within ±90 nm. The 300 nm, corresponding to approximately two-thirds of the investigated140

wavelength, spans, when investigated on positive and negative values, over one full wave and141

enables the analysis of large piston errors. The fine alignment range allows examination of more142

subtle residual errors.143

The performance of the ML models is evaluated based on the quality of the PSF correction.144

Once piston values are predicted, their deviations from the true values are computed. Two quality145

metrics are employed to assess these residuals and their effect on the PSF. The Strehl ratio, S,146

provides a direct measure of performance relative to the nominal PSF, with a quality threshold of147

S > 0.8 ensuring near-diffraction-limited performance according to the Maréchal criterion [28].148

In addition, the RMS WFE is used as a complementary metric to quantify alignment accuracy.149

Noise is further introduced into the system to enhance data realism and bridge the domain gap150

between synthetic and experimental data, thereby improving generalisation to unseen real-world151

conditions. This study considers both photon noise and readout noise, where the signal-to-noise152

ratio (SNR) is defined as:153

SNR =
𝑓√︁

𝑓 + 𝜎𝑟𝑜𝑛

(2)

The SNR depends on the photon flux, f, and the readout noise, 𝜎ron. The readout noise, taken154

from [1], has an average value of 2.1 𝑒− , which is typical of a CMOS detector. Noisy PSF data155

are generated following the same procedure as before, using Eq. 1. Photon and readout noise156

are then applied using Poisson and Gaussian distributions, respectively. Assuming constant157

readout noise, Eq. 2 is used to compute the corresponding photon flux f, where approximately158

100 photons yield an SNR of 10, and 10,000 photons correspond to an SNR of 100.159

(a) SNR = 10 (b) SNR = 30 (c) SNR = 100

Fig. 4. Generated PSF images for a random configuration of piston values. Going from
(a) - (c) the SNR increases from 10 − 100.

The effects of noise on the PSFs are shown in Fig. 4, illustrating SNRs of 10, 30, and 100. For160

each configuration of piston values, different levels of noise were applied. The SNR magnitude161

was varied by adjusting the photon flux. At low SNR values, important features are obscured,162

making it difficult for the ML model to distinguish them. As the SNR increases, distinctive163

features become more apparent, leading to higher model recognition accuracy. High SNR values,164

such as in Fig. 4c, are comparable to noiseless PSFs and retain the key global structures necessary165

for model analysis.166

2.2. Degeneracies167

For effective training of the ML model, large sets of input data are required. Careful data168

evaluation and selection are necessary to remove sources of degeneracy. Firstly, due to the169
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inherent shape and symmetry of the four-petal design, off-axis pairs can produce identical or170

nearly indistinguishable PSFs. For example, piston values applied to 𝑃0 and 𝑃1 (as shown in171

Fig. 1b) generate the same PSF as if the same pistons were applied to 𝑃2 and 𝑃3. Degeneracy also172

arises from pistons applied on opposite segments: a piston 𝑥 (sub-𝜆) on one segment produces173

the same PSF as −𝑥 on the opposite segment. ML models rely on observing distinct patterns174

to learn the mapping between input and output; a direct and unique (bijective) relationship is175

therefore essential. When similar PSF images can be generated by multiple piston combinations,176

a direct 1-to-1 mapping of piston values to images becomes impossible. Additionally, the 𝜆177

ambiguity imposed by the exponential term in Eq. 1 introduces further degeneracy, as phase178

cycles of multiples of ±2𝜋 (or ±𝜆) produce identical monochromatic PSFs.179

Consequently, several methods are implemented to resolve these issues and ensure a direct180

piston-to-PSF mapping. Previous works have addressed these challenges by enforcing asymmetry,181

using an odd number of segments, cropping petals, or limiting aberration ranges [1, 29, 30].182

However, in the present study, alternative solutions are investigated to accommodate symmetrical183

structures:184

• Diagonal symmetry - To remove ambiguity caused by the symmetrical segment structure,185

a reference segment is selected. By setting 𝑃0 as the reference segment in the training186

and only correcting the remaining three petals, diagonal pairs are eliminated. Since only187

relative piston differences are required for phase correction, aligning to this new reference188

preserves wavefront information while simplifying the learning task.189

• Opposite petals - Even with a reference segment set as 𝑃0, the left and right petals can still190

produce degenerate PSFs. Introducing an additional channel by adding a known defocus191

to the incoming wavefront helps distinguish the signs. This can be achieved by moving the192

secondary mirror or detector and recording a second PSF image.193

• 2𝜋 ambiguity - Adding a second wavelength removes this limitation, ensuring that at least194

one wavelength is out of phase with the other unless perfect phasing is achieved. For195

clear feature differentiation and easier generalisation, blue (450 nm) and red (650 nm) are196

chosen as two colour channels. Piston movements then correspond to different phase shifts197

at each wavelength.198

Fig. 5 presents examples from the dataset, showing differences in the blue and red PSF images.199

The first column displays two blue PSFs at different 𝑃1 values, with the other petals held constant200

at values specified in the figure caption. In the upper row, 𝑃1 is set to −270 nm, while in the201

lower row it is 180 nm. Varying by the blue wavelength of 450 nm, which corresponds to 2𝜋,202

these images are identical. Only through the addition of the second wavelength can these cases203

be distinguished, thereby resolving the 2𝜋 ambiguity. For each piston combination, a defocus of204

1.2 radians was applied to the incident wavefront to eliminate sign ambiguities, as illustrated in205

the upper-right panel for the blue PSF. While this introduces unique images, additional training206

data provide the model with even more information, enabling more effective learning.207

One dataset consists of four PSF images: an in-focus and a defocus image for each of the two208

wavelengths considered. This method applies novel diversity through defocus and wavelength209

channels to correct large aberrations. This approach aligns with standard imaging and calibration210

methods that the satellite is expected to support. Defocus can be introduced through movement211

of M2 or the detector, or using multiple detectors, removing mechanical complexity and reducing212

image acquisition time. Broadband detectors and filters can be used to capture both colour213

channels required. A total of 20,000 sets are generated for each model, using piston values214

within [−300, 300] nm for the coarse model and [−90, 90] nm for the fine model. These ranges215

correspond to approximately 2𝜆/3 and 𝜆/5, where 𝜆 is chosen as the smallest wavelength216

investigated (blue, 450 nm), ensuring that the correction procedure also accommodates the larger217
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Fig. 5. Plots of PSF images in training data for Q = 2. Pistons are set as [0,-270,-
140,250] nm, generated in blue (450 nm) and red (650 nm) wavelengths. Bottom row
plots are generated from pistons of [0,180,-140,250] nm, i.e. 2𝜋 shift in P1 at 450 nm.
The third column shows the phases induced by the different piston values.

wavelength. Tip and tilt values are set to zero. The defocus magnitude was selected to produce a218

noticeable difference between the images, making them distinguishable for the model. A value219

of 𝜆/5 (corresponding to 1.2 radians at 𝜆 = 450 nm) was chosen, providing sufficient variation220

to break the 2𝜋 degeneracy. Fifteen percent of the training set was reserved for validation, and an221

additional 1,000 sets were generated at this stage for post-training testing.222

2.3. Machine Learning Model223

In this study, a model is trained using PSF images and their corresponding piston values, which224

serve as the inputs and outputs, respectively. The four images (in-focus and defocus images225

at two wavelengths) are provided as four 2-dimensional input channels, while the three piston226

values result in a final layer of 3 outputs.227

For image analysis, convolutional layers are employed. Here, a 3 × 3 kernel is applied to each228

pixel in the input images, capturing relationships between neighbouring pixels and encoding229

patterns into the learned coefficients. The width of each convolutional layer, defined by the230

number of filters they contain, starts at 4 and increases sequentially to 8 and 16. This progressive231

increase in width enables hierarchical learning, where different levels of feature complexity can232

be captured. The first layer extracts local features and global symmetry, while subsequent layers233

identify higher-order features and more complex patterns. After feature extraction, the data234

passes through two fully connected layers before reaching the output layer.235

Additional components are incorporated throughout the network layers to enhance performance.236

Rectified Linear Unit (ReLU) functions [31] are applied in each layer, introducing non-linearity237

and mitigating the vanishing gradient problem, thereby enabling deeper network architectures.238

Batch normalisation [32], applied after each convolution, normalises intermediate activations,239

improving training stability and acting as a form of regularisation to reduce overfitting. A240

max pooling layer [33], inserted between the convolutional and dense layers, reduces spatial241

dimensions while preserving the most salient features. These integrated elements collectively242

improve performance and contribute to a more compact and effective model.243

Fig. 6 shows the full network architecture, with Table 1 providing detailed properties and244

parameters, totalling 12,295. Untrainable parameters correspond to constant weights, calculated245
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Fig. 6. Diagram of the ML model and process of training. Four PSFs are set as
input, passing through three convolution layers (light blue) of increasing depth then
two fully connected layers (pink), with a final dense output of 𝑁 piston values (red).
Parameter sum to a total of 12,295 of which 56 are untrainable and are part of the
model infrastructure.

Layer Size Parameters

Input (64, 64, 4) 0

Convolution 1 (32, 32, 4) 164

Convolution 2 (16, 16, 8) 328

Convolution 3 (8, 8, 16) 1232

Global Pooling (16) 0

Dense 1 (128) 2176

Dense 2 (64) 8256

Output (3) 195

Table 1. Summarised properties of each model layer. Their label and function is
given, alongside the output shape of data passing through, and number of parameters
associated. Quantities in bold represent the number of neurons - width of each layer.

from mean and variance rather than being updated via backpropagation.246

Both the coarse and fine models were trained using the same training rate and batch size,247

resulting in a training time of approximately 254 seconds on a typical office laptop (see248

figure caption). Fig. 7 shows model accuracy versus training epoch for each model, with the249

corresponding validation (val) data also displayed. In Fig. 7a, the mean piston RMS is calculated250

over the entire sample after each epoch. Over time, the RMS decreases, plateauing after an initial251

period of rapid improvement.252

For the fine model (green), smaller input residuals result in an inherently lower RMS throughout253

training. The fine model reaches a plateau even before epoch 10; an early stopping callback254

further reduces training time by halting learning once the validation loss ceases to deviate above255

a specified threshold. Model behaviour is further illustrated in Fig. 7b, which shows the increase256

in accuracy as training progresses. Notably, the validation loss and RMS are smaller than those257

for the training set, and correspondingly, validation accuracy is higher. This discrepancy may258

arise from several factors, most likely the regularisation effect of batch normalisation. During259

training, batch normalisation uses the mean and variance of each batch, introducing additional260

noise into the network’s forward pass. In validation, a rolling mean computed from the training261

phase is used, avoiding this noise, causing the observed variation.262
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(a) Mean piston RMS during training (b) Model accuracy during training

Fig. 7. Analysis of training with respect to piston RMS and accuracy. Both the training
and validation metrics are plotted for the coarse (orange) and fine (green) models. (a)
Plot of mean piston RMS of the entire data set against epochs. Accuracy (ratio of
correct values) is shown in (b). For each model, 100 epochs are used with a batch size
of 32, taking 253.74 s to train. Early stopping capped epochs to 70 and 44 for the coarse
and fine respectively. Training was carried out on a laptop with an AMD Ryzen 5 PRO
7535U processor (6 cores, 12 threads, 29-4.55 Ghz) and 16 GB of DDR5 RAM.

3. Results263

3.1. Noiseless Data264

Fig. 8 summarises key performance metrics of the two-step phasing procedure. For 1,000 testing265

sets, model performance in terms of the Strehl ratio is shown in Fig. 8a and Fig. 8b, for the266

initially generated PSF images and those reconstructed after each step using the predicted pistons.267

The Strehl ratio of the blue channel is reported here, as pistons have the greatest effect on shorter268

wavelengths. Initially, the Strehl ratio ranges from 0.36 to 0.95, with only 8.7% of cases above269

the intended threshold of 0.8. The coarse model improves this to 95.2% above 0.8, increasing270

the mean Strehl ratio from 0.6 to 0.92. Similar improvements are observed in the red channel,271

increasing from 0.64 to 0.95. The reduction in standard deviation indicates higher precision272

throughout the correction process.273

Introducing the residual piston error as input to the fine model further improves the Strehl274

ratio, with 99.9% of cases above the threshold and a mean ratio of 0.99 for both colour channels.275

Fig. 8c shows the residual piston error for each petal in every test set, plotted against the276

input piston error of that petal. Results are shown after applying the coarse model alone and277

after both models are applied. The accuracy of the coarse model decreases at large piston278

values, particularly near the training boundary of 300 nm, where the model fails to correctly279

distinguish piston values. This is expected, as such errors were not encountered during training.280

Interestingly, the skew of residuals changes sign across the range, with negative pistons being281

over-predicted and positive pistons under-predicted. The scarcity of training data near these282

boundaries contributes to this reduced accuracy. Elsewhere, the spread of residuals remains fairly283

constant, with a standard deviation of 33.5 nm. Over the full range of pistons, the subsequent fine284

model reduces residuals to within ±10 nm, with a standard deviation of 3.7 nm. Some deviations285

reflect gaps in data and further training may improve accuracy further.286

The consistent accuracy across the full range of trained piston values suggests that the model287

prioritises correcting the Strehl ratio over precisely predicting individual pistons. Sign ambiguities288

between pistons on 𝑃1 and 𝑃2 may still persist for piston values < 𝜆/14, leading the model289
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(a) PSF Strehl ratios (b) Mean Strehl ratios

(c) Residual Piston Values

Fig. 8. Analysis of the two-step correction procedure through testing of 1,000 sets.
(a) Histogram of Strehl ratios for blue (450 nm) before correction and after each step,
noting the percentage above 0.8. This threshold is marked with a dashed line. The
mean Strehl value for each step, for each wavelength, is shown in (b). Blue (/) and
red (//) bars represent the respective colour channels and error bars show the standard
deviation error on the mean. Physical residual piston errors are plotted in (c), with both
coarse (orange) and fine (green) values against the initial piston error per mirror petal.

to predict ±𝑥, effectively averaging the relative pistons to zero. Alternatively, the model may290

struggle to distinguish pistons of such magnitude to high precision as aberrations < 𝜆/14 have291

little effect upon the PSF images. This limited performance can be seen in the fine model accuracy292

of Fig. 7b.293

3.2. Effect of Noise294

Testing the original models with noisy data demonstrates that they are incapable of efficiently295

analysing such images. Even at an SNR of 100, the lowest mean RMS WFE remained296

approximately 150 nm after correction. Two new models were trained following the same297

approach as described in Section 3.1, with a coarse 300 nm model and a fine 90 nm model.298

10,000 piston combinations were used to generate PSF images, to which photon and readout299

noise were applied prior to training. Varying the photon flux (f in Eq. 2) generated an individual300

training set of PSFs at each SNR level. The resulting models were then tested over an SNR range301
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(a) Mean Strehl ratio (b) Percentage of PSFs with > 0.8 Strehl

Fig. 9. Results from testing on noisy PSF images. (a) Plot of mean Strehl ratio for
each step in the correction process as a function of SNR. Percentage of diffraction
limited PSFs are shown in (b). The coarse (orange) and subsequent fine (green) model
are compared for initial piston values ±300 nm, and fine phasing of ±90 nm. Inset
highlights differences at higher percentages.

of 10–100 for 100 cases at each level.302

Fig. 9 presents the results of applying the procedure to noisy datasets, including both photon303

and readout noise. The resulting mean Strehl ratios are shown in Fig. 9a, evaluated after coarse304

alignment and again after fine alignment. Performance is poor at low SNR (= 10), but improves305

with increasing signal, achieving diffraction-limited performance for both models at SNR ≥ 30.306

Notably, the coarse model plateaus shortly after reaching a Strehl ratio of 0.9, with a maximum307

of 0.95 at SNR = 100. This level of correction alone is sufficient for effective phasing. The fine308

model provides slightly higher accuracy, reaching a maximum mean Strehl ratio of 0.97. Thus,309

the fine model is not strictly necessary to achieve high Strehl ratios but can further refine the310

system with only one additional iteration, requiring minimal additional resources and time.311

Fig. 9b illustrates the effective phasing by plotting the percentage of PSF images phased to the312

diffraction limit (i.e., > 0.8). For SNR ≥ 30, both models successfully phase 96–100% of cases313

to the diffraction limit. Both models accurately predict piston values with sufficient precision;314

the fine model is not strictly required but provides additional accuracy across all SNR levels.315

4. Discussion316

The results demonstrate that a two-cycle, CNN-based machine learning alignment model can317

achieve excellent piston-correction accuracy. Using the two-step process, a mean Strehl ratio of318

0.96 can be achieved at SNR ≥ 100, with a failure rate of less than 0.01%. These results show319

the effectiveness of adding defocus and colour channels into the CNN models, developing the320

work of [dumiont].321

For space telescope alignment applications, an ideal ML model must reach diffraction-limited322

correction while remaining compact enough for on-board storage. The memory and computational323

resources of space-qualified electronics are limited, making a model with fewer parameters324

advantageous. This is achieved with a model requiring significantly fewer internal parameters325

than previous approaches, including recent ResNet developments in [1] and standard ResNet326

architecture. The reduced architecture, with only 12, 295 parameters, enhances performance327

while minimizing memory and power requirements. Together, the coarse and fine models occupy328

only 436 KB.329

Accurate alignment of deployable telescopes in space enables larger effective apertures,330
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directly improving angular resolution. High-resolution Earth observation, imaging, and space331

communications benefit from sub-𝜆 aligned mirrors, which enable more detailed mapping,332

diffraction-limited performance, and higher efficiency. Applying this ML architecture and333

phasing strategy to segmented telescopes corrects misalignments to excellent accuracy.334

While the coarse model alone achieves efficient alignment (RMS 10–20 nm, with 95.2% of335

cases phased to the diffraction limit), the fine model further refines performance to ∼ 1 nm RMS336

with minimal additional resource cost. Compared to alternative iterative techniques, requiring337

only two cycles relaxes the demands on servo actuators for segment movement. Fast convergence338

reduces mechanical wear and alignment time. With only a defocus image per colour channel,339

piston values can be determined and corrected in less than one second, conserving both power340

and time—critical resources aboard small satellites. This method can be repeated regularly341

when in contact with a ground beacon or other alignment source, ensuring precise alignment342

throughout the satellite’s operational lifetime. This performance strengthens small deployable343

satellites as a scalable, accessible, and affordable technology. Pre-flight training time on Earth is344

also reduced due to the compact model size, allowing rapid re-training to improve performance345

or adapt the model for different payloads.346

For deployment on production space telescopes, additional considerations are required,347

particularly regarding the fidelity of the digital twin relative to the actual telescope, which may348

include small manufacturing or polishing errors. Each payload should be considered individually,349

and a model trained for that specific geometry. Surface errors of each segment affect the PSF350

and thus the performance of the models; these errors should be measured and incorporated351

into training to ensure optimal results. While some errors can be simulated, unknown thermal352

deformations and material property variations in space present additional challenges. So far,353

the model incorporates a reference segment (segment with no alignment capability) to remove354

degeneracies caused by the symmetry of the 4-petal system. In a real system, each segment355

has its own residual surface figure error, leading to a unique sub-PSF. This naturally breaks356

the symmetry when the model is trained to account for these measured errors. In addition,357

incorporating the full telescope design, including the secondary mirror, will be necessary to358

capture the increased complexity of aberration propagation between optical surfaces. The method359

indicates that fast alignment is feasible, enabling adaptive and continuous correction. However,360

to achieve optimal performance, well-calibrated piston control for each segment is essential;361

otherwise, a closed-loop system is required. While demonstrated for piston values up to 300 nm,362

aberration magnitudes are payload-specific. Resulting piston values from simulations may be363

physically unattainable with existing hardware due to actuator resolution or thermal deformation,364

and thus the model’s achievable accuracy may vary for each application.365

While showing excellent accuracy in piston correction, this work contributes to the broader366

field of segmented-mirror alignment. In future work, it will be beneficial to investigate how using367

additional PSF channels is affected by the inclusion of residual tips and tilts. The CNN will be368

analysed and adapted accordingly to account for these additional errors, changing outputs and369

parameters as required. It is expected that the inclusion of further aberrations will only slightly370

increase the computational cost, as it relies on the same overall CNN architecture. Additionally,371

an interesting avenue for future study is the sampling of the PSF and an assessment of the model’s372

limitations when correcting images from systems with different detector pixel scales.373

5. Conclusion374

A convolutional neural network has been demonstrated to effectively analyse and determine375

piston corrections for PSF images from a segmented telescope. PSF images are generated from376

four segments with relative pistons and processed in two colour channels, including the addition377

of a defocus image. Training of both coarse and fine alignment models demonstrated the ability378

to correct pistons to achieve a Strehl ratio > 0.8. The coarse alignment model, trained with379
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pistons in the range ±300 nm, phased PSFs to a mean Strehl ratio of 0.92. The subsequent fine380

alignment model further improved the correction, achieving a mean Strehl ratio of 0.99.381

The effect of photon and readout noise was also investigated, providing insight into the impact382

of SNR on model performance when trained on noisy datasets. An SNR > 40 was sufficient for383

diffraction-limited phasing, with > 97% of cases reaching a mean Strehl ratio of greater than384

0.93 after the two-step process. An SNR of 100 phases 99.9% of cases to a mean Strehl of 0.96.385

Further improvements in data processing and model architecture could enhance the performance386

of the ML approach. Introducing small residual tip/tilt errors would better represent realistic387

operating conditions. Additionally, including surface errors across each petal could improve388

the fidelity of PSF simulations and reduce degeneracies in the training data, supporting more389

effective learning. Another avenue for investigation is PSF sampling and an assessment of the390

limitations of the model when correcting images from systems with smaller diffraction ratio Q.391

Funding392

Acknowledgement393

The authors would like to thank Steven Knox, Surrey Satellite Technology Limited, for his394

valuable input of deployable optical systems.395

Disclosures396

The authors declare no conflicts of interest.397

Data Availability Statement398

Data underlying the results presented in this paper are not publicly available at this time but may399

be obtained from the authors upon reasonable request.400

References401

[1] M. Dumont, C. M. Correia, J.-F. Sauvage, N. Schwartz, M. Gray, and J. Cardoso, “Phasing402

segmented telescopes via deep learning methods: Application to a deployable cubesat,” J.403

Opt. Soc. Am. A, vol. 41, pp. 489–499, 2024.404

[2] E. Seedhouse, SpaceX: Making Commercial Spaceflight a Reality. Springer Science &405

Business Media, 2013.406

[3] P. A. Lightsey, C. B. Atkinson, M. C. Clampin, and L. D. Feinberg, “James webb space407

telescope: Large deployable cryogenic telescope in space,” Opt. Eng., vol. 51, no. 1,408

p. 011 003, 2012.409

[4] R. P. Welle, “Overview of cubesat technology,” Handb. Small Satell. Technol. Des. Manuf.410

Appl. Econ. Regul., pp. 1–17, 2020.411

[5] D. Selva and D. Krejci, “A survey and assessment of the capabilities of cubesats for earth412

observation,” Acta Astronaut., vol. 74, no. 1, pp. 50–68, 2012.413

[6] National Academies of Sciences, Engineering, and Medicine, Achieving Science with414

CubeSats: Thinking Inside the Box. Washington, DC: National Academies Press, 2016.415

[7] N. Schwartz et al., “Phasing a small deployable optic space telescope using focal-plane416

wavefront sensing,” in Space Telescopes and Instrumentation 2024: Optical, Infrared, and417

Millimeter Wave, 2024.418

[8] D. Dolkins and H. Kuiper, “Design and end-to-end modelling of a deployable telescope,”419

Front. Astron. Space Sci., vol. 4, p. 13, 2017.420



OP I ICA 

PUBLISHING GROUP 

[9] N. Schwartz et al., “Active deployable primary mirrors on cubesat,” in Proceedings of421

13th IAA Symposium on Small Satellites for Earth Observation, 2021.422

[10] I. Parry et al., “Unfolding, self-aligning thermal space telescopes for high resolution earth423

observations,” in International Workshop on High-Resolution Thermal EO, 2023.424

[11] D. Gooding et al., “A novel deployable telescope to facilitate a low-cost< 1m gsd425

video rapid-revisit small satellite constellation,” in International Conference on Space426

Optics—ICSO 2018, SPIE, vol. 11180, 2019, pp. 102–110.427

[12] I. Parry et al., “Innovative technologies for very-high-resolution MWIR and LWIR Earth428

observations,” in Proceedings of the Small Satellites Systems and Services Symposium (4S429

2024), Conference Paper, 2025.430

[13] M. D. Perrin et al., “Preparing for jwst wavefront sensing and control operations,” in Space431

Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, vol. 9904,432

International Society for Optics and Photonics, 2016, 99040O.433

[14] I. Surdej, N. Yaitskova, and F. Gonte, “On-sky performance of the zernike phase contrast434

sensor for the phasing of segmented telescopes,” Appl. optics, vol. 49, no. 21, 2010.435

[15] R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications436

of Digital Image Processing III, SPIE, vol. 207, 1979.437

[16] M. R. Bolcar and J. R. Fienup, “Sub-aperture piston phase diversity for segmented and438

multi-aperture systems,” Appl. Opt., vol. 48, no. 1, A5–A12, 2009.439

[17] S. Ragland and L. Gers, “A phase retrieval technique to measure and correct residual440

segment piston errors of large aperture optical telescopes,” in Ground-based and Airborne441

Telescopes IX, International Society for Optics and Photonics, vol. 12182, SPIE, 2022.442

[18] R. A. Gonsalves, “Phase Retrieval And Diversity In Adaptive Optics,” Opt. Eng., vol. 21,443

no. 5, 1982.444

[19] Y. Wang et al., “Deep learning wavefront sensing for fine phasing of segmented mirrors,”445

Opt. Express, vol. 29, no. 6, pp. 8745–8756, 2021.446

[20] L. Sauniere, W. Gillard, and J. Zoubian, “Decoding optical aberrations of low-resolution447

instruments from psfs: Machine learning and zernike polynomials perspectives,” in Space448

Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, SPIE,449

vol. 13092, 2024, pp. 1262–1274.450

[21] D. Li, S. Xu, D. Wang, and D. Yan, “Large-scale piston error detection technology for451

segmented optical mirrors via convolutional neural networks,” Opt. Lett., vol. 44, 2019.452

[22] F. Rossi, C. Plantet, A.-L. Cheffot, G. Agapito, E. Pinna, and S. Esposito, “Machine453

learning techniques for piston sensing,” in Proceedings of SPIE Vol. 12185, Adaptive454

Optics Systems VIII, vol. 12185, 2022.455

[23] J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, and D. Sandler, “Adaptive optics for array456

telescopes using neural-network techniques,” Nature, vol. 348, 1990.457

[24] J. Fang and D. Savransky, “Automated alignment of a reconfigurable optical system using458

focal-plane sensing and kalman filtering,” Appl. Opt., vol. 59, no. 31, pp. 9649–9659,459

2020.460

[25] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2015.461

[26] F. Chollet et al., Keras, https://keras.io, 2015.462

[27] C. S. Adams and I. G. Hughes, Optics f2f: From Fourier to Fresnel. Oxford University463

Press, 2018.464

https://keras.io


OP I ICA 

PUBLISHING GROUP 

[28] A. Maréchal, Étude des effets combinés de la diffraction et des aberrations géométriques465

sur l’image d’un point lumineux. Ed. de la Rev. d’Optique théoret. et instrumentale, 1948.466

[Online]. Available: https://books.google.co.uk/books?id=5tSmzwEACAAJ.467

[29] B. Pope, N. Cvetojevic, A. Cheetham, F. Martinache, B. Norris, and P. Tuthill, “A468

demonstration of wavefront sensing and mirror phasing from the image domain,” Mon.469

Not. R. Astron. Soc., vol. 440, pp. 125–131, 2014.470

[30] F. Martinache, “The asymmetric pupil fourier wavefront sensor,” Publ. Astron. Soc. Pac.,471

vol. 125, no. 926, pp. 422–430, 2013.472

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”473

in Proceedings of the 27th International Conference on Machine Learning (ICML), 2010,474

pp. 807–814.475

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by476

reducing internal covariate shift,” in Proceedings of the International Conference on477

Machine Learning (ICML), 2015, pp. 448–456.478

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep479

convolutional neural networks,” in Advances in Neural Information Processing Systems,480

vol. 25, 2012, pp. 1097–1105.481

https://books.google.co.uk/books?id=5tSmzwEACAAJ

