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Abstract—Convenience internet access and ubiquitous com-
puting have opened up new avenues for learning and teaching.
They are now no longer confined to the classroom walls, but
are available to anyone connected to the internet. E-learning
has opened massive opportunities for learners who otherwise
would have been constrained due to geographical distances, time
and/or cost factors. It has revolutionized the learning methods and
represents a paradigm shift from traditional learning methods.
However, despite all its advantages, e-learning is not without its
own shortcomings. Understanding the effectiveness of a teaching
strategy through learner feedback has been a key performance
measure and decision making criteria to fine tune the teach-
ing strategy. However, traditional methods of collecting learner
feedback are inadequate in a geographically distributed, virtual
setup of the e-learning environment. Innovative and novel learner
feedback collection mechanism is hence the need of the hour.
In this work, we design and develop a deep learning based
student feedback prediction system by recognizing the subtle
facial motions during a student’s learning activity. This allows
the system to infer the needs of the learners as if it is a real-
human teacher in order to provide the appropriate feedback.
We propose a recurrent convolutional neural network structure
to understand the color and depth streams of video taken by
an RGB-D camera. Experimental results have shown that our
system achieve high accuracy in estimating the feedback labels.
While we demonstrate the proposed framework in an e-learning
setup, it can be adapted to other applications such as in-house
patient monitoring and rehabilitation training.

Keywords: feedback prediction, Kinect, convolutional neu-
ral networks (CNNs), recurrent neural networks (RNNs), deep
learning, e-Learning

I. INTRODUCTION

Learning is an integral part of the intellectual development
of a human being. Indeed learning forms the foundation on
which we strive to progress towards a better future. Knowledge
transfer in the traditional classroom-based environment has
its limitations. To democratize learning, e-learning offers a
cheap solution to educate a maximum number of learners with
relatively less effort and constraints. However, e-learning has
its own set of problems, especially when it comes to collecting
user feedback. A key teaching strategy involves getting real-
time feedback from learners regarding their attention level,
interest and overall effectiveness of the teaching strategy. This
helps educators to address the inadequacies of the lesson

delivery system for an improved learning experience. In a
classroom environment, this is relatively easy. A teacher can
follow the visual cues of facial expressions of the learner to
determine whether a learner has a favourable or unfavourable
reaction to the lesson being taught.

While such visual cues could be obtained at ease in a
classroom environment where both teacher and learner are
interacting face-to-face in real time, things are different in an
e-learning environment. In e-learning, study materials, such as
lecture videos, interactive simulations, etc. are pre-recorded
and delivered to users distributed across wide geographic
locations. Such interaction of learner and teacher makes real-
time feedback collection and evaluation of the effective-
ness of the teaching strategy difficult. While static feedback
collection mechanism is frequently employed by many e-
learning providers such as questionnaire-based feedback, such
a strategy has limited usefulness. The necessary questions
may not be provided or the learner may also not be able to
express their difficulties through such questions and answers.
Frequently, the learners avoid providing feedbacks due to sheer
apathy. Moreover, such feedbacks are frequently collected
after the conclusion of the course, which leaves no room for
improvement to the present course. These make such methods
ineffective and encourages a research into new solutions.

Picking up visual cues and processing them for understand-
ing the emotion of the subject is a core matter for image
processing. A subject’s image of the facial expression during
learning can be analysed and a deep learning neural network
can be trained to categorize the facial expression into one of
the multiple emotion classes. Such classifications can give a
better, dynamic and real-time feedback of the actual emotional
reaction of the learner towards the learning module.

In this work, we propose a feedback system which captures
multiple facial expressions of the learner while interacting with
an e-learning system. The assumption is that a learner’s mental
state (like or dislike of a module, finding the module easy
or hard etc.) is revealed through these facial expressions. A
trained deep learning system is expected to give a more in-
sightful and dynamic feedback from the learner. We have also
performed experimental studies to measure the effectiveness of
our system, by comparing the predicted feedback to the actual
feedback provided by the test subjects. The use of the dual
stream convolution neural network, each for colour and depth
image has been validated through the results of the experiments978-1-5386-9141-0/18/$31.00 c©2018 IEEE



performed. We have also validated the effectiveness of the use
of multi-step long short-term memory (LSTM) network.

The structure of this paper is as follows. We first review
literatures related to student feedback prediction in Section II.
We then elaborate the construction of our feedback prediction
database using Kinect in Section III. We propose our dual-
stream RNN approach for feedback prediction in Section
IV. We show experimental results in Section V. We finally
conclude this paper and discuss future research directions in
Section VI.

II. RELATED WORK

Many studies utilize RGB-D cameras such as Kinect for
virtual training and smart environments. For example, an
innovate idea of interactive Chinese character learning envi-
ronment with Kinect was proposed in [1]. It is shown that
with a posture reconstruction algorithm, Kinect can be used for
monitoring postures healthiness in a workspace environment
[2]. The filtered pose graph can be used to achieve posture
reconstruction in real-time [3]. In [4], an improved posture
classification method was proposed by using Kinect and a max-
margin classifier. In this research, we focus on the application
of e-learning feedback based on the facial information captured
by Kinect.

E-learning through virtual laboratory has been proposed
as a cost-effective and scalable alternative to the physical
laboratory. It has been shown in the literature that virtual
environment based practical demonstration is an effective alter-
native to physical laboratory demonstration among the young
learners [5] - something very suitable for engineering edu-
cation. Virtual Laboratory can emulate the entire experience
using virtual environment only without requiring any physical
experiments to be carried out. The TRAILS laboratory that we
will be using for our work [6] is an example of such an en-
vironment. While in other virtual laboratory implementations,
part of the experiment is carried out in physical equipment and
the rest uses computer simulation. An example in the literature
is the engine calibration lab at the University of Bradford [7].

E-learning based hands-on training and experimental
demonstration have been used for numerous purposes. Railway
simulation-based training is particularly popular. One such ex-
ample is SIGMA RAIL of the Euro-Mediterranean project [8].
In the domain of mechanical engineering, work by Burk et
al. [9] is quite promising. This work virtualizes an engine
laboratory to demonstrate the powertrain calibration of an
engine. The web is the most important and ubiquitous ICT
medium today, because of its ease-of-use, wide reach and not
requiring any specialized devices. TRAILS - the laboratory
environment used for our work is one such web-based solution
used for performing experiments in electrical, electronics and
mechanical engineering. The system uses MVC architecture
of Java Enterprise Edition for deployment [10] and [11] are
examples of other similar works in the literature which uses a
web-based framework for simulating experiments concerning
electrical circuit and electromagnetics. Apart from the web,
mobile-based access is becoming popular today. Web-based
contents meant for wide-screen display in a computer monitor
is not suitable for mobile display. In such cases, mobile content
adaptation is required. [12] describes a potential solution for
mobile content adaptation of e-learning websites.

Our work is based on the technique of facial expression
recognition using a dual stream recurrent neural network based
on deep learning. Works in the facial expression recognition
literature [13] [14] uses only convolution neural network. Such
a network cannot recognize the temporal motion of the faces
captured across different frames of the Kinect recording. In
our approach, convolution neural network is used to extract
features in each individual frames, which are feed into a
recurrent neural network. The use of recurrent neural network
allows our system to detect temporal motion as recorded in
the series of frames, thereby providing better results. We have
also used more fine-grained labels in our test dataset for better
training performance.

III. CONSTRUCTION OF A STUDENT FEEDBACK
PREDICTION DATABASE

In this section, we describe the process of building a student
feedback prediction database in an online laboratory training
environment. We build this database because it allows us to
exploit a data-driven approach for automatically investigating
whether a student finds the module he/she being taught is use-
ful or not. Compared to letting a student fill in a questionnaire
form after the module is finished, such automatic feedback
prediction mechanism is much more efficient and can produce
much larger amounts of dynamic feedbacks for subsequent
module assessment and improvement.

A. Participating Subjects

To build our database, we recruited 22 voluntary under-
graduate and master students from Jadavpur University as our
subjects. These subjects consist of 15 males and 7 females,
age between 20 and 25 years old, and come from various
study backgrounds (such as education, computer science, and
electronic engineering). They were unknown about the back-
ground or purpose of our study prior to the experiment. As
our experiment involves collecting visual data, we allowed
them to wear glasses if needed and ensured that they all have
normal visions. During the whole experiment, we kept them
anonymous to avoid inducing any identity biases.

B. Learning Modules

We used the online laboratory training website developed
in Jadavpur University as our experiment platform [6]. This
website hosts a range of modules designed for instructing
students to perform electronic engineering experiments online,
so that they can improve learning efficiency offline when
they only have limited access to physical equipments that are
normally expensive and in short supply. We investigated 4
different kinds of learning modules in this study:

• Theory. This module introduces the prerequisite
knowledge of electronic engineering experiments us-
ing texts, equations, and illustrative figures.

• Video. This module displays lecture videos recorded
when professors and lecturers taught the theories and
instructions of experiments in classes.

• Animation. This module shows the step-by-step ma-
nipulations of equipments using 3D animations, with
narrative to facilitate understanding.



• Simulation. This module allows students to use a
mouse to interact with experiment devices (e.g., wiring
and switching on/off) according to taught instructions,
and to read physically simulated metrics (e.g., currents
and voltages) from virtual dash boards.

In this work, we built our database from the example of the
22 participating subjects learning the theory of a ceiling fan
via the 4 learning modules. In the future, we will incorporate
more examples to expand our database.

C. Experimental Setup and Protocol

We used a Microsoft Kinect (V1) [15] to capture the
subjects’ facial appearance and geometry while they were
learning the theory of a ceiling fan via the Theory, Video,
Animation, and Simulation modules. Our experimental setup
consisted of a PC, a Kinect placed right below the PC monitor,
and a subject sitting in front of the PC monitor. The Kinect was
connected to and controlled by a Laptop, capturing a subject’s
upper body color and depth images in a fixed 30FPS rate, with
a fixed resolution of 640 × 480. For each subject and each
module in turn, we instructed him/her to do the following:

1) Sitting down and spending 1 minute to find out where
the module is in the website and how to open it to
start learning.

2) Learning the designated knowledge via the module
for about 2 minutes, while the Kinect was capturing
his/her upper body color and depth images.

3) When finished, he/she was asked to rate the quality
of the module from 0-9, with 0 being the poorest and
9 being the best.

We captured 2 minutes because the Kinect produced 30 color
and depth images per second and this already gave us a large
amount of data (over 300GB in size). In the future, we will
consider longer learning durations and finer-grained student
feedbacks (e.g., on a subsequence level) such that module
analysis and feedback prediction can be improved further.

D. Data Post-Processing

As the captured raw data is of a large size and thus difficult
to directly use for machine learning algorithms, we resized
each raw color and depth image from the original resolution
of 640×480 to a lower resolution of 160×120. We sampled a
shorter color and depth stream of length 12 every second from
the original 2 minutes streams, with the sampling intervals
of the shorter streams being 0.5 seconds (i.e., 15 consecutive
images from the original streams). Please see Fig. 1 for an
example. This way, we created a database of 22 subjects,
4 learning modules, and over 10,000 short image and depth
streams of resolution 160× 120.

IV. A DUAL-STREAM RNN APPROACH FOR STUDENT
FEEDBACK PREDICTION

In this section, we propose a dual-stream RNN approach
that simultaneously learns features from a color and a depth
stream for student feedback prediction. Because a single frame
lacks facial motion information, we use a RNN to adaptively
combine features from all frames of a color and a depth stream,
such that more discriminative features can be learnt for our
sequence classification task [16].

Color frame 1 Color frame 2 Color frame 3 Color frame 4 Color frame 5 Color frame 6

Color frame 7 Color frame 8 Color frame 9 Color frame 10 Color frame 11 Color frame 12

Depth frame 1 Depth frame 2 Depth frame 3 Depth frame 4 Depth frame 5 Depth frame 6

Depth frame 7 Depth frame 8 Depth frame 9 Depth frame 10 Depth frame 11 Depth frame 12

Fig. 1. An example color and depth stream in our database. For each
stream there are 12 frames, two consecutive of which span 0.5 seconds in
the original streams as captured by Kinect. The color frames capture the
facial appearance of the shown subject and the depth frames capture his facial
geometry information. The resolution of each frame is 160×120 as generated
from the original resolution 640 × 480. The shown subject was using the
Theory module while being captured by Kinect, and he gave a score of 7 to
this module when finished.
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Fig. 2. The overview of our approach. The input to our approach is a
color image stream and a depth image stream, and the output is a vector of
10 predicted probabilities corresponding to 10 student feedbacks. The feedback
label with the highest probability is the predicted result. The color and
depth CNNs share the same architecture but have separate parameters, which
extract a feature vector from each input color and depth image separately
and independently. The color and depth feature vectors of the same time step
are concatenated and fed into a RNN in a step-by-step way. After all time
steps have been processed, the internal cell state of the RNN that captures
stream-level information is used for student feedback classification.

A. Method Overview

As shown in Fig. 2, the input to our approach is a color and
a depth stream of length 12 with resolution 160×120, and the
output is a label from 0 to 9 representing the predicted student
feedback. Since our approach works on short color and depth
streams, it can be efficiently applied to much longer learning
durations via frame sampling, without increasing the storage
or computation burdens. Therefore, it can be deployed to real
laboratory environments with Kinect [15] for automatically
providing interactive student feedbacks.

For each color and depth image in the input streams, we
extract a color and a depth feature vector using a color and
a depth CNN separately [17]. We use two separate CNNs
because color and depth images have different modalities and
thus require learning two different sets of feature extraction
parameters. However, we do share the two CNNs among all
frames in the input streams, as we want to extract motion-



independent features at this stage and leave the task of ex-
tracting motion-dependent features to the next stage.

After CNN feature extraction, we concatenate the color
and depth feature vectors of each frame and feed the resulting
feature vector into a recurrent neural network. As the network
maintains an internal cell state that is updated by each frame
input [18], its state vector naturally summarizes the motion
features of the input color and depth streams. We use this
vector as our final learnt features, from which we predict
a vector of 10 student feedback probabilities using a fully-
connected classification layer. Given the ground-truth feedback
labels, we can learn the color and depth CNNs, the RNN, and
the classification layer all together [19].

B. CNN Architecture Design

Although the color and depth CNNs have separate param-
eters, their architectures are the same as illustrated in Fig.
3. In practice, we treat a depth image as a special type of
color image whose red, green, and blue channels have the
same grey (depth) values of corresponding pixels. Given a
color/depth image of size 160 × 120 × 3, after a series of
convolutions, activations, and poolings, we obtain 64 feature
maps of resolution 4×3 and finally reshape them into a single
feature vector of size 768. We describe each building block in
the following.

Convolution Block. For C input feature maps of resolution
W ×H , we create C convolution kernels of small size 3× 3
and slide each kernel across its corresponding feature map to
compute a new feature map [20]. Each value on the new map
is computed as the cross-correlation of the kernel parameters
and the corresponding 3 × 3 pixel values from the input
feature map. To preserve the spatial resolution, we pad the
four boundaries of each feature map with one strip of zeros.
From the C intermediate maps, we generate C ′ feature maps
of the same spatial resolution using a single kernel of size
1×1. This kernel works on each pixel location, convolving C
channel values into C ′ ones via a dense linear transformation.
Essentially, we perform a 3 × 3 convolution on each input
feature map separately and then use a 1 × 1 convolution to
fuse different channels. This significantly reduces parameter
sizes and accelerates training [21].

ReLU Function. This function applies element-wise to C
feature maps of resolution W × H , computing ReLU(x) =
x+ = max{x, 0} [17]. That is, a negative input element
x is truncated to zero with a gradient zero, and a positive
element passes freely with a constant gradient one. Compared
to that of the traditional sigmoid and hyperbolic tangent (tanh)
activation functions, this non-vanishing gradient property has
been widely shown to be crucial for training deep CNNs and
other neural networks [22], [23].

2 × 2 Max-Pooling. We use a max-pooling operator that
takes the maximum element within each 2× 2 small window
(of stride 2) on the input feature maps after activation [20]. On
one hand, the spatial resolution of feature maps can be halved
from the original 160× 120 to 80× 60, 40× 30, and 20× 15.
This greatly reduces the size of the final features learnt by a
CNN and thus alleviates overfitting to a certain extent. On the
other hand, because we only take the maximum element within
a pooling window and do not care about where the element is,

the pooled features have certain translational invariance that is
beneficial for visual recognition tasks [24].

5 × 5 Max-Pooling. This block has the same function as
that of the 2× 2 max-pooling, except that its pooling window
is 5× 5 and thus larger and has a corresponding larger stride
of 5. We use it to further down-size the feature maps from the
resolution of 20 × 15 to that of 4 × 3. Because there are 64
feature maps of resolution 4 × 3, we finally obtain a feature
vector of length 4 × 3 × 64 = 768. As we have two CNNs
corresponding to the color and depth streams separately, each
frame in the streams is transformed to a feature vector of this
length, resulting in 12× 2 = 24 feature vectors.

C. RNN Architecture Design

We collectively denote the 12 feature vectors learnt from
a color stream as xc = {xc

i ∈ R768}12i=1 and the 12 feature
vectors learnt from a depth stream as xd = {xd

i ∈ R768}12i=1.
As color and depth features reveal facial appearance and
geometry respectively [15], we concatenate them together and
obtain x = {[xc

i ,x
d
i ] ∈ R1536}12i=1. Our student feedback

prediction task can be formulated as training a classifier that
takes a sequence x as input and predicts a discrete label from
0 to 9 as output [16].

We may consider the multi-class logistic regression which
linearly combines all features and generates a vector of 10
probabilities using the softmax function [25]. However, this
approach would be unable to exploit the temporal features
of facial motions, that can reveal subtle changes of facial
expressions. We believe that such changes rather than absolute
facial appearance or geometry are essential for telling whether
a student likes or dislikes a learning module. For example, the
change from a neutral expression to a happy one may indicate
that he/she likes the module, while the reverse change may
suggest that the module is becoming uninteresting to him/her.
The logistic regression cannot differentiate the two opposite
situations. Therefore, we consider the recurrent neural network
approach to this problem [16].

Specifically, we learn a single feature vector of length 256
from x using the popular long short-term memory (LSTM)
recurrent neural network [18], as shown in Fig. 4. The LSTM
and its variants have been found to be very effective for
sequence modelling and classification [26]. We describe its
computation steps as follows:

ft = σs(Wfxt + Ufht−1 + bf )︸ ︷︷ ︸
forget gate activations

(1a)

it = σs(Wixt + Uiht−1 + bi)︸ ︷︷ ︸
input gate activations

(1b)

ot = σs(Woxt + Uoht−1 + bo)︸ ︷︷ ︸
output gate activations

(1c)

ct = ft ◦ ct−1 + it ◦ σh(Wcxt + Ucht−1 + bc)︸ ︷︷ ︸
updated cell states

(1d)

ht = ot ◦ σh(ct)︸ ︷︷ ︸
output hidden states

(1e)

where σs and σh are the sigmoid and tanh activation
functions respectively, the initial cell and hidden states c0
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Fig. 3. The architecture of the color/depth CNN. The input is an image of resolution 160× 120 with 3 channels (i.e., red, green, and blue), and the output
is a feature vector of length 768. A depth image is treated as a special type of color image with its 3 channels the same as the depth values. For a depthwise
convolution, we create a convolution kernel of small size 3× 3 for each feature map separately, and pad the four boundaries of each feature map with a strip
of zeros for maintaining the spatial resolution after convolution. For a pointwise convolution, we create a single kernel of size 1× 1 that transforms the feature
values of each pixel into a new set of values independently. We use three 2× 2 max-pooling operators of stride 2 and a 5× 5 max-pooling operator of stride 5
to downsize feature maps by 2 and 5 times respectively. We use the ReLU function for activation.
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Fig. 4. The unrolled architecture of the LSTM network. The input is
a sequence of 12 feature vectors of length 2 × 768 = 1536, as computed
by concatenating the color and depth feature vectors of the same time step
in a stream. The output is a sequence of hidden states that are fed back
into the LSTM network in every time step. Inside the network there is an
internal cell state that is updated according to the current input feature vector
and the previous hidden and cell states. As the time unrolls, the cell state
accumulates the facial motion information until the current time step. After
the input sequence has been fully processed, the final cell state captures the
motion features of the whole sequence. We use the final cell state for student
feedback prediction by adding a fully-connected classification layer. Please
refer to Section C for the internal mathematical mechanism of the LSTM
network.

and h0 are all zeros, and the set of matrices and bi-
ases {Wf , Uf , bf ,Wi, Ui, bi,Wo, Uo, bo,Wc, Uc, bc} are the
learnable parameters of the LSTM network.

It can be seen that the LSTM network’s cell state ct is
updated by the current step input xt and the previous step
hidden state ht−1. Because ht−1 itself is dependent on all
previous steps input {xi}t−1i=1 , ct naturally accumulates the
motion features of the input stream until the time step t. We

set the cell and hidden dimensionality to 256 and use c12, i.e.,
the cell state after the input stream has been fully processed,
as the final learnt feature vector. We add a fully-connected
classification layer to map c12 to a vector of 10 probabilities
using the softmax function. The label that achieves the highest
probability is the predicted student feedback.

D. Optimization

We use the stochastic gradient descent method to optimize
the parameters of the color CNN, the depth CNN, and the
LSTM network [19]. The optimization is done by minimizing
the cross-entropy loss function [17]. We set the initial learning
rate to be 0.1 and decay it by 10% every 2 epochs for a total
number of 10 epochs. For each epoch, we sample a random
training color and depth stream along with the ground-truth
feedback label, until all streams in the training dataset have
been accessed. To stabilize training, we use a momentum of
0.9 and set the weight decay value to be 0.0001.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results to
validate the effectiveness of our approach for student feedback
prediction. For each experiment, we treat the short color and
depth streams (with the ground-truth feedback scores) from a
random subset of the 22 subjects as the training set and the
remaining as the testing set. We train our approach end-to-end
using the hyper-parameters in Section IV(D) and report the
percentage of streams in the testing set that have the correct
predicted student feedbacks.



TABLE I. TESTING ACCURACIES FOR DIFFERENT PARTITIONS OF THE
TRAINING AND TESTING SUBJECTS IN OUR STUDENT FEEDBACK

PREDICTION DATABASE.

Training/Testing subjects 9/13 11/11 13/9 15/7 17/5
Accuracy 58.34% 72.55% 79.28% 86.45% 87.21%
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Fig. 5. The percentage of correctly predicted student feedbacks given different
partitions of training and testing subjects in our database.

A. Classification Accuracy

To thoroughly evaluate the generalization performance of
our approach, we randomly split the 22 subjects into a number
of training/testing subjects partitions: 9/13 subjects, 11/11
subjects, 13/9 subjects, 15/7 subjects, and 17/5 subjects. We
report the testing accuracy for each partition in Table I and
Fig. 5. It can be seen that even with fewer training subjects
than testing ones (i.e., 9/13), our approach achieves a feedback
prediction accuracy significantly higher than that of random
guessing, which is 10% since we have 10 labels to predict.
It can also be seen that with more training subjects the
prediction accuracy can be improved further. Under an 80%
training/testing subjects partition, the accuracy can be as high
as 87.21%, which may be usable in a realistic online laboratory
training environment.

With color CNN only With depth CNN only With both

CNN architecture
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Fig. 6. The percentage of correctly predicted student feedbacks with the color
CNN only, the depth CNN only, and both color and depth CNNs, respectively.
The partition of training and testing subjects is 17/5.
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Fig. 7. The percentage of correctly predicted student feedbacks with the
LSTM network of step size 1, 3, 6, and 12 respectively. The partition of
training and testing subjects is 17/5.

B. Evaluation of the Color and Depth CNNs

We evaluate the effectiveness of using both color and depth
information for student feedback prediction and show the result
in Fig. 6. For this experiment we use the 17/5 training and
testing subjects partition, as it gives us the highest prediction
accuracy (Fig. 5). It can be seen that using the color CNN
alone already gives us an 83.35% accuracy, as compared to the
50.32% accuracy achieved by using the depth CNN alone. This
shows that facial appearance information is more predictive of
student true feedbacks than facial geometry. However, adding
the depth CNN can improve the accuracy further, which
indicates that facial geometry complements facial appearance
to a certain extent.

C. Evaluation of the LSTM Network

We also evaluate the effectiveness of learning facial mo-
tion features via the LSTM network for student feedback
prediction. To do the evaluation, we consider shortening an
original input stream of length 12 to the length of 6, 3, and 1
respectively, by concatenating the adjacent 2, 4, and all frames
in the stream. This way, we maintain all input features while
restricting the capacity (i.e., the total step size) of the LSTM
network for learning temporal features. If the input stream is
of length 1, the network is essentially reduced to a normal
multi-layer perceptron (MLP). As shown in Fig. 7, the MLP
architecture achieves the lowest feedback prediction accuracy,
while adding more steps gradually improves the accuracy of
the LSTM architecture. This is because more steps act as a
temporal regularizer that forces the LSTM to exploit the hidden
motion information within frames.

VI. CONCLUSION AND FUTURE WORK

We studied the problem of predicting whether a student
likes a particular learning module or not in an online laboratory
training environment. We used the Microsoft Kinect (V1) for
capturing a student’s facial appearance and geometry using
color and depth images respectively, which are able to reveal
subtle facial motions that are crucial for student feedback
prediction. We recruited 22 undergraduate and master stu-
dents of diverse backgrounds, incorporated 4 learning modules
(including Theory, Video, Animation, and Simulation), and
collected each student’s responses to each of these modules



for 2 minutes using the Kinect. After post-processing, we
obtained over 10,000 short color and depth streams with the
corresponding student ratings of modules from 0 to 9. Our
database lays a foundation for data-driven student feedback
prediction, module analysis and improvement.

For student feedback prediction, we built a dual-stream
approach that learns features from a color and a depth stream
using a color and a depth CNN respectively. To identify relative
motion features rather than absolute ones, we combined the
color and depth features of each time step and fed them
into a LSTM network for recurrent feature embedding. We
used the LSTM’s final cell state for sequence-level feedback
classification. Our experimental results showed that combining
color and depth features are better than single ones, and that
exploiting temporal features lead to better feedback classifica-
tion performance.

Limitations and Future Work. This work has used only
one particular experiment from electrical engineering category
of TRAILS catalogue. The TRAILS e-learning module con-
tains numerous experiments from electrical, electronics and
mechanical engineering. In the future, an enlarged and diverse
dataset could be created by incorporating numerous other
experiments that TRAILS has to offer.

Due to the high frame rate of Kinect (30 FPS) and
resulting large dataset size, we have been able to record each
learning activity of 2 minutes duration. In the future, we would
incorporate more realistic learning duration, roughly spanning
2 to 15 minutes. We would keep the dataset size manageable
by exploiting online frame sampling method.

In our current work, we have used feedback scores from
students for an entire learning duration. However, for our
envisaged longer duration recordings, such scores would not
be very accurate. A fine-grained score reflecting the feedback
for each part of the learning module would be better suitable.

We explored facial appearance and facial geometry in-
formation for student feedback prediction. Another important
cue of student learning activities is their eye movements and
attention patterns on a screen [27]. Such extra information
would help us identify whether a student is concentrated or
not and which parts of the screen interest him/her more. We
are interested in exploring the use of an eye-tracking device
and the Kinect together in the future.
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