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Abstract—Musculoskeletal and neurological disorders are com-
mon devastating companions of ageing, leading to a reduction
in quality of life and increased mortality. Gait analysis is
a popular method for diagnosing these disorders. However,
manually analysing the motion data is a labour-intensive task,
and the quality of the results depends on the experience of
the doctors. In this paper, we propose an automatic framework
for classifying musculoskeletal and neurological disorders among
older people based on 3D motion data. We also propose two
new features to capture the relationship between joints across
frames, known as 3D Relative Joint Displacement (3DRJDP)
and 6D Symmetric Relative Joint Displacement (6DSymRJDP),
such that relative movement between joints can be analyzed.
To optimize the classification performance, we adapt feature
selection methods to choose an optimal feature set from the
raw feature input. Experimental results show that we achieve
a classification accuracy of 84.29% using the proposed relative
joint features, outperforming existing features that focus on the
movement of individual joints. Considering the limited open
motion database for gait analysis focusing on such disorders,
we construct a comprehensive, openly accessible 3D full-body
motion database from 45 subjects.

Index Terms—Musculoskeletal disorders, Neurological disor-
ders, Gait analysis, Feature selection.

I. INTRODUCTION

GAIT disorders are among the most common causes of
balance problems in older people [1] and often lead to

injury, disability, loss of independence, which result in poor
quality of life. The prevalence of these conditions is expected
to rise dramatically as the population ages. At least 30% of
people aged 65 and older report difficulty walking three city
blocks or climbing one flight of stairs, and approximately 20%
require the use of a mobility aid to move [2]. Musculoskeletal
and neurological disorders have proved as some of the major
reasons for an abnormal gait. They were detected in approxi-
mately 25% of persons between 70 and 74 years of age, and
nearly 60% of those between 80 and 84 years of age [3].

Gait analysis is a popular method for diagnosing the
musculoskeletal and neurological disorders, but determining
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abnormal gaits can be challenging. This is because there are
no clearly accepted standards to evaluate the gait of older
people [4]. While some research investigate on time-distance
variables (e.g. walking speed, step length) [5], others carry
out detailed biomechanical analysis (e.g. joint rotation, joint
position) [6] to investigate musculoskeletal and neurological
disorders. Regardless of the methods used, manually analysing
gait data is a labour intensive process, and its accuracy depends
on the experience of the doctors performing the analysis.

Automatic diagnosis of musculoskeletal and neurological
disorders using machine learning technology has shown to be
effective in reducing the manpower required for gait analy-
sis and ensuring the reliability of the diagnosis results [7].
Holzreiter and Kohle apply artificial neural networks (ANNs)
for the classification of normal and pathological gaits using
foot-ground reaction forces [8]. Barton and Lees apply ANNs
to differentiate different types of gaits using joint angles
[9] to distinguish different gait patterns. Begg et al. extract
the Minimum Foot Clearance (MFC), the shortest distance
from the floor to the toes during the swing phase, as the
input of the support vector machine (SVM) classifier [10] for
gait balance classification. Khandoker et al. combine multiple
features for gait analysis [11]. They concatenate a selection
of extracted statistical values from the MFC histogram (e.g.
Mean, Standard deviation, Maximum and Minimum) as the
identification features for the balance impairment classification
for older people. Despite many successes, the majority of
existing work only evaluates features extracted from individual
joints independently, and ignores the relationship between
different joints that could be useful in gait analysis. Also,
selecting a subset of joints based on expert knowledge, such as
[10], [11], may not be optimal for gait classification from the
data point-of-view. Concatenating a large number of features
into a single feature vector could have an adversarial effect on
classification accuracy due to the noise of some of the features,
and could cause low system efficiency.

In this paper, we utilize features based on the relative
movement information for gait analysis. Previous research in
analysing the distance between the left and right feet is a solid
support for the effectiveness of relative information [12], but
they are limited since other joint pairs are not considered.
Here, we propose two comprehensive features that capture the
relative information between all pairs of joints across frames,
which are known as the 3D Relative Joints Displacement
(3DRJDP) and the 6D Symmetric Relative Joint Displacement
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(6DSymRJDP). Compared with existing methods that utilize
features extracted from individual joints, our proposed method
is capable of evaluating the relationships of joints for all
joint pairs, providing a holistic view of all interactions. Such
comprehensive information allows us to develop methods that
outperform the existing work in gait disorder classification.

We also adapt feature selections algorithms from the field of
machine learning to further improve the system performance.
Concatenating all possible features for gait analysis has an
adverse effect as some features are noisy or even irrelevant.
Manually selecting the features based on expert knowledge
is sub-optimal from the data point-of-view. Therefore, we
evaluate and adopt a number of feature selection algorithms
to select an optimal feature set from the input features. In
particular, during feature selection, we consider the whole
temporal series of the relative features from two joints as a
unit. This allows us to create human-understandable results
and to ensure a reasonable system training cost. We develop
a fully automated framework to evaluate the quality of the
features using F-score, Neighborhood Component Analysis
(NCA) and ReliefF. The system then iteratively selects the
best I features that maximize the classification accuracy.

Finally, in view of the limited open resource for 3D gait
analysis, we construct a comprehensive 3D motion database
captured from 45 older people, annotated with the sub-
jects’ anonymised medical history. Based on the agreed de-
cision from 3 medical doctors, the subjects are diagnosed as
healthy, muscle weakness (e.g. muscle strain, underdeveloped
muscles), joint problem (e.g. degenerative joint disease, os-
teoarthritis) and neurological defect (e.g. Parkinson’s disease,
Alzheimer’s diseases). All three classes of disorder result
in movement difficulties, which may appear similar at the
movement level. However, the underlying causes are very
different. The database is open for academic and research uses
for free, and is downloadable from our research website.

We present four main contributions in this paper:
• We propose an automatic framework for identifying

musculoskeletal and neurological disorders among older
people based on 3D motion data.

• We propose two new features called the 3D Relative
Joints Displacement (3DRJDP) and the 6D Symmetric
Relative Joint Displacement (6DSymRJDP) to capture the
relationship of joint pairs across frames.

• We adapt feature selection methods including F-score,
Neighborhood Component Analysis and ReliefF, for
choosing an optimal feature set from the input features
to optimize classification accuracy.

• We construct an openly accessible, comprehensive 3D
gait database with the anonymised medical history of the
subjects. The subjects are diagnosed as healthy, muscle
weaknesses, joint problems and neurological defects by
3 medical doctors.

The rest of the paper is organized as follows. In Section
II, we introduce some related features and approaches for
gait analysis. Section III gives an overview of the proposed
system. In Section IV, we give the information about our data
collection process for creating the motion database. Section V
provides the details of our proposed features on relative joint

relationships. Section VI introduces different feature selection
algorithms. Section VII explains different classification kernels
that are commonly used for motion classification. Section VIII
presents the experimental results. Section IX concludes the
paper and discusses possible future directions.

II. RELATED WORKS

Extensive research efforts have been made towards gait
disorder analysis. In this section, we first discuss the dif-
ferent features adopted in gait analysis. Then, we present a
summary of machine learning methods for improving gait
analysis, including feature selection algorithms and gait pattern
classification algorithms.

A. Features for Gait Analysis

Gait features are important for an objective gait assessment
and analysis. The core of many contemporary features for gait
analysis is the measurement of joint kinematics and kinetics
such as the Conventional Gait Model and the Cleveland Clinic
Model [13]. Among many gait features, symmetry is an im-
portant gait characteristic and is defined as a perfect agreement
between the actions of the two lower limbs [14]. To calculate
symmetry, mobility parameters (e.g. single joint rotation) and
spatiotemporal parameters (e.g. step length) can be used [15].
Since it is difficult to diagnose the class of disorder solely
based on asymmetric gait, balance and walking stability are
also used. Multiple balance and stability measures including
RMS acceleration, jerk (the derivative of acceleration ), sway
(a measure on how much a person leans his/her body), step and
stride regularity and variability are proposed [16]. Mobility
parameters such as cadence and step length are also important
indicators to quantify gait [17]. Notice that these kinds of
balance and walking stability parameters are hand-crafted and
require expert knowledge. In our research, we propose a new,
generic feature based on relative joint information, which is
an important addition to the currently developed parameters
in identifying gait abnormalities.

B. Gait Feature Selection Methods

Simply concatenating all the gait features typically results
in high-dimensional data, and some dimensions may not be
relevant for the problem. It is therefore advantageous to
identify the important features for gait analysis, thereby re-
moving features that convey little or redundant discriminatory
information. Some techniques [18], [19] involve choosing a
subset of original features that can represent the original
data under certain criteria. They mainly consider conven-
tional dimensionality reduction or statistical tools, such as
principal component analysis (PCA) [20], [21] and F-score
[22]. Robnik-Åăikonja et al. propose ReliefF, which weights
different features by maximizing the distance between the data
that belongs to different classes [23]. Yang et al. propose
Neighborhood Component Analysis (NCA) to learn a feature
weighting vector by maximizing the expected leave-one-out
classification accuracy using a regularization term [24]. In
our research, we adapt F-score, ReliefF and NCA for feature
selection, and evaluate their respective performance.
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TABLE I
THE CAUSES OF DISORDER AND SUBJECTS’ STATISTICS.

Muscle
Weakness

Joint Problem Neurological
Defect

Healthy

18 4 13 10

Min. Max. Average
Age 61 91 70.26

Weight 33 67 54.06
Height 138 198 154.26

MMSE-Thai* 15 30 24.16
FES-I** 16 26 18.96

* Mini-Mental State Examination ** Thai Fall Efficacy Scale-International

C. Automatic Diagnosis Methods

Many machine learning algorithms have been adapted to
automatically diagnose gait disorder. In [25], non-hierarchical
cluster analysis is used to categorize four subgroups based
on the temporal-spatial and kinematic parameters of walking.
Similarly, hierarchical cluster analysis is conducted in [26],
identifying three groups of subjects with homogeneous levels
of dysfunction. Artificial neural networks (ANN) are used in
[27] to classify post-stroke subject’s gait into three categories
based on the types of foot positions on the ground at first
contact. In [28], [29], the ability of ANN and Support Vector
Machine (SVM) in distinguishing gait patterns for Parkinson
Disease is discussed. Gait features from wavelet analysis and
kinematic parameters are extracted, which are passed to the
SVM for classification [11]. We also utilize SVM in our
method as it has great usability in clinical routines without
necessitating complex apparatus.

Fig. 1. The overview of our automatic method for gait disorder diagnosis.

III. SYSTEM OVERVIEW

An overview of the proposed system is presented in Fig.
1. We capture the 3D motion of walking from the subjects
and collect their anonymised medical histories. Then, we
pre-process the captured data using inverse kinematics and
dynamic time warping. We extract different types of features
from the captured data, including 3DRJDP and 6DSymRJDP
we proposed, as well as other common joint-based features.
We adopt 3 feature selection methods and evaluate their
effectiveness. Finally, the selected feature set is passed into
a gait classifier.

IV. DATA COLLECTION

In this section, we first introduce the information about
the invited subjects. Then, we give details on our process to
capture motion data.

A. Subjects

The data was collected from a total of 45 subjects in a
voluntary manner, whose protocol was agreed by the Faculty
of Associated Medical Sciences Ethics Committee at Chiang
Mai University. The experiment was conducted in Chiang Mai,
Thailand. Applicants were Thai older people living in dwelling
communities and nursing homes in Chiang Mai.

3 medical doctors from the Faculty of Associated Medical
Sciences, Chiang Mai University attended the assessment.
They diagnosed the subjects and agreed on the respective
causes of the gait disorder, which were classified into healthy,
muscle weakness, joint problem and neurological defect. This
classification scheme was suggested as it was very useful as an
initial diagnosis. With our system, patients can be efficiently
and accurately directed to the relevant departments for further
evaluations, in order to understand the specific causes of
the disorder. In developing countries where there are limited
budget and manpower for health-care, such an initial diagnosis
scheme can effectively screen patients and relieve the stress
from the front line. We discuss the possibility of employing
depth camera based motion sensing system for markerless
motion capturing or even everyday movement tracking in
Section IX.

The voluntary applicants were screened and approved by
medical experts using standard clinical test. Applicants were
only included if they satisfy the following requirement: (1)
They could walk without any assistance from physiotherapist
or gait aids for at least 10 meters. (2) They had no cognitive
impairment as tested by the Mini-Mental State Examination
(MMSE-Thai 2002), i.e., MMSE-Thai ≤ 14 for older people
who were uneducated, MMSE-Thai ≤ 17 for older people who
graduated in primary school level, and MMSE-Thai ≤ 22 for
older people who graduated in high-school level or above [30].
(3) They had no fear of falling as tested by Thai Fall Efficacy
Scale-International (FES-I), i.e., Thai FES-I < 23 [31]. (4)
They had no other medical history that affected walking than
those we considered. (5) They had no pain while walking.

We performed a randomly sampled, population-based study.
In particular, we randomly selected 45 older people with ages
ranging between 61 and 91 from the approved list of the
applicants, which resulted in 5 male subjects and 40 female
subjects. The gender bias in the database reflects that of the
voluntary applicants. The details information of the subjects
including the causes of the disorder, age, weight, height,
MMSE-Thai and FES-I are summarized in Table I.

B. Data Acquisition

Direct interviews with the subjects were conducted using
a structured questionnaire [32] before their walking sessions.
The collected data covered known diseases, medication history
and Activities of Daily Living (ADLs).

A clinical and functional assessment with motion capture
was carried out. The motion data was collected using the
Motion Analysis R© optical motion capture system [33] with
fourteen Raptor-E optoelectronic cameras sampling at 100 Hz.
The subjects agreed to wear a motion capture suit, attached
with a set of reflective markers on their body based on Helen
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Hayes marker set structure [34]. The output of the motion
capture system is a set of 3D marker’s positions in the temporal
domain.

Adapting the protocol from [35], all subjects were asked to
walk naturally along a 10 meter walkway with their normal
gait speed. The length is bounded by the capturing volume
of the motion capture system. Four trials of walking were
performed and a rest period of two minutes was given after
each trial. The first trial was for practising and the last was for
cooling down. We only consider the second and third trials as
they better represent the subjects’ normal walking motions.

V. SKELETON-BASED FEATURE EXTRACTION

In this section, we explain how we process the data and
extract the features from a skeleton-based motion format.

A. Data Preprocessing

The data from the motion capture system is expressed in
a 3D marker position format. Such a format is inefficient for
motion classification as it depends heavily on the body size
and phenotype. Following existing method on motion analysis
such as [36], we convert the marker position based format into
a skeletal format, such that we can focus on the movement of
joints instead of body surfaces.

The conversion to a skeletal format is facilitated by inverse
kinematics [37], a process that calculates the angle of a
skeletal joint from multiple markers on the body surface.
Motion retargeting is performed to obtain a skeleton with
predefined dimensions. In our system, all these functionalities
are provided by the software Autodesk MotionBuilder.

Fig. 2. The skeleton structure

Fig. 3. Sampled keyframes in one walking cycle.

The skeletal definition we adapted consists of 25 joints
corresponding to real-human joint positions, as shown in Fig 2.
Fig. 3 shows sampled frame of the skeleton in a gait cycle. We
store the skeletal joint rotation data in the BioVision (BVH)
format, which is a popular format readable by a large number
of software libraries [38]. Notice that the end effectors do not
contain any rotation information as they do not have children
joints, and they are excluded in the feature extraction process.

We normalize the motion data of the walking cycles in the
spatial domain by aligning the first frame to 0 degree, such
that the gait classification process is not affected by the initial
walking direction. Furthermore, to normalize the temporal
variation, we perform dynamic time wrapping (DTW) [39]
to wrap all captured motion into the mean duration of the
walking cycles, such that the classifier is not affected by the
duration of the motion. These processes are supported by the
software MATLAB R© version 2016b [40].

Fig. 4. The extraction of the feature vector.

B. Feature Extraction

In the two sections below, we explain how the proposed
features based on relative joint information, known as 3DR-
JDP and 6DSymRJDP, are extracted. We also describe other
traditional features that are considered in this paper, for which
the features are extracted from individual joints.

The considered features below are defined for each frame
of the motion. In order to evaluate the continuous sequence
of motion features over time, we concatenate the frame-based
features over time into a long feature vector. This process is
visualized in Fig. 4.

In the following explanation, i and j represents joints.
(xi, yi, zi) represents the 3D position of joint i, and (xj, yj, zj)
represents that of joint j. ϕi , θi , ωi are the roll, pitch and yaw
angels of joint i respectively. (xhips, yhips, zhips) represents the
3D position of the hips joint. n is the total number of joints.

C. The Proposed Features

3D Relative Joint Displacement (3DRJDP) is defined as the
displacement between all the possible joint pairs in the skeletal
hierarchy, excluding the pairs connecting to the same joint. We
extract relative joint displacement as:

D3DRJDP(i, j) =
{
(xi − xj), (yi − yj), (zi − zj)

}
. (1)

3DRJDP within one frame consists of n(n−1) items:

{D3DRJDP(1,2), D3DRJDP(1,3), D3DRJDP(1,4), ...
D3DRJDP(2,1), D3DRJDP(2,3), ... D3DRJDP(n,n−1)} .

(2)
6D Symmetric Relative Joint Displacement (6DSymRJDP) is

defined as the pair-wise displacement between all the possible
joint pairs, excluding the pairs connecting to the same joint.
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Also, because of the symmetric nature of the feature, we also
exclude the pairs with joint identifier i > j:

D6DSymRJDP(i, j) =
{
(xi − xj), (yi − yj), (zi − zj),
(xj − xi), (yj − yi), (zj − zi)

}
.

(3)

6DSymRJDP within one frame consists of n(n−1)
2 items:{

D6DSymRJDP(1,2), D6DSymRJDP(1,3),
D6DSymRJDP(1,4) ... D6DSymRJDP(2,3) ...
D6DSymRJDP(n−1,n)

}
.

(4)

D. Existing Features Considered in this Work

3D Joint Angle (3DJA) is defined as the concatenation of
Euler joint rotation angle for each joint:

D3DJA(i) = {ϕi, θi, ωi} . (5)

3DJA within one frame is therefore:

{D3DJA(1), D3DJA(2), ... D3DJA(n)} . (6)

4D Joint Angle (4DJA) is extracted by converting the
Euler 3DJA rotation into the quaternion representation. The
quaternion representation avoids problems such as ambiguity
and gimbal locks in the Euler angles system:

D4DJA(i) = {wi, ai, bi, ci} , (7)

where the quaternion parameters are calculated as:[
wi

ai

bi

ci

]
=


cos( ϕi2 )cos( θi2 )cos(ωi

2 )+sin( ϕi2 )sin(
θi
2 )sin(

ωi
2 )

sin( ϕi2 )cos( θi2 )cos(ωi
2 )−cos( ϕi2 )sin(

θi
2 )sin(

ωi
2 )

cos( ϕi2 )sin(
θi
2 )cos(ωi

2 )+sin( ϕi2 )cos( θi2 )sin(
ωi
2 )

cos( ϕi2 )cos( θi2 )sin(
ωi
2 )−sin( ϕi2 )sin(

θi
2 )cos(ωi

2 )

 . (8)

4DJA within one frame is therefore:

{D4DJA(1), D4DJA(2), ... D4DJA(n)} . (9)

3D Relative Joint Distance (3DRJD) is defined as the
concatenation of the Euclidean distance in each dimension
between the all possible joints pairs, except the self-connecting
pairs and the neighboring joint pairs as the distances of these
pairs are constant:

D3DRJD(i, j) =
{√
(xi − xj)2,

√
(yi − yj)2,

√
(zi − zj)2

}
.

(10)
3DRJD within one frame is therefore:

{D3DRJD(1,2), D3DRJD(1,3), D3DRJD(1,4)
... D3DRJD(n−1,n)} .

(11)

1D Relative Joint Distance (1DRJD) is the 1D version of
3DRJD by combining the 3D distance into a 1D distance:

D1DRJD(i, j) =
√
(xi − xj)2+ (yi − yj)2+ (zi − zj)2. (12)

1DRJD within one frame is therefore:

{D1DRJD(1,2), D1DRJD(1,3), D1DRJD(1,4)
... D1DRJD(n−1,n)} .

(13)

3D Hips Relative Joint Position (3DhipRJP) is defined as
the concatenation of the Euclidean distance of each dimension

of all joints with respect to the hip position, except hips joint
itself and the neighboring joints of the hips as they have
constant distances with the hips:

D3DhipRJP(i)

=

{√
(xhips − xi)2,

√
(yhips − yi)2,

√
(zhips − zi)2)

}
.

(14)

3DhipRJP within one frame is therefore:{
D3DhipRJP(1), D3DhipRJP(2), ... D3DhipRJP(n)

}
. (15)

1D Hips Relative Joint Position (1DhipRJP) is the 1D
version of 3DhipRJP by combining the 3D distance into a
1D distance:

D1DhipRJP(i)

=

√
(xhips − xi)2+ (yhips − yi)2+ (zhips − zi)2.

(16)

1DhipRJP within one frame is therefore:{
D1DhipRJP(1), D1DhipRJP(2), ... D1DhipRJP(n)

}
. (17)

VI. FEATURE SELECTION ALGORITHMS

To extract the useful information from the raw data in
a lower dimensional format, we apply feature selection al-
gorithms before doing classification. These algorithms are
independent of the input feature types. Given a type of input
feature (e.g. 3DJA, 3DRJD, 3DRJDP, 6DSymRJDP), these
algorithms obtain a subset of the features to be used in
the classification algorithm in the next stage. Using 3DJA
as an example, one possible solution from these algorithms
could be considering only the lower body joint angles but
discarding the upper body ones. The underlying motivation is
that some dimensions of the features are more relevant to the
classification problem, while some may either be irrelevant or
noisy. By selecting only the feature subset that is helpful for
classification, the size of the input data can be reduced and
the classification accuracy can be improved.

In this research, we employ three algorithms to measure the
discriminativeness of each feature and select the optimal sub-
set, including (1) F-score [22], (2) Neighborhood Component
Analysis (NCA) [24], and (3) ReliefF [23]. These methods
have shown great successes in other problems, and we evaluate
their performances in human motion analysis.

A. F-score

Here, we explain on our implementation of F-score, which
measures the discrimination power within a set of training data
with predefined criterion functions to characterize the intrinsic
properties of the training data.

Given the training vectors pk , k = 1, ...,m, and the number of
members in each of the C different gait classes (e.g. healthy,
muscle weakness) as nc , the F-score of the lth feature is
defined as:

wl =

C∑
c=1
(p(c)

l
− pl)2/

C∑
c=1

∑nc
k=1(p

(c)
k,l
− p(c)

l
)2

nc −1
(18)

where C is the total number of gait classes, pl and p(c)
l

are
the average values of the whole dataset and the gait class c
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respectively, p(c)
k,l

is the lth feature of the k th instance in the
gait class c.

The numerator in (18) represents the discrimination among
all category sets, and the denominator represents the discrim-
ination within each of the sets. Since more discriminative
features are represented by larger F-score values, we use the
scores to rank the importance of the joints features and select
the best I features that maximize the classification accuracy.

B. Neighborhood Component Analysis (NCA)

Neighborhood Component Analysis (NCA) is a dimensional
reduction method that improves the predicting performance of
the K-Nearest Neighbor (KNN) classifier being used in the
feature selection process.

In [41], NCA has been proposed as the method to learn a
Mahalanobis distance measurement for maximizing a stochas-
tic variant of the leave-one-out cross-validation within KNN
in the training dataset. This Mahalanobis distance can be
calculated using inverse square roots and represented as sym-
metric positive semi-definite matrices. Here, the probability of
a training vector, pi , selecting another training vector, pj , as
its reference point is defined as:

Pi j =


K(Dw(pi, pj))∑
k,i Dw(pi, pk)

if i , j,

0 if i = j,
(19)

where K(∆)= exp(−∆/σ) is a kernel function, the kernel width
σ is an input parameter that influences the probability of each
point being selected as the reference point, w is a weighting
vector, and Dw is the weighted distance between two samples.

The objective function of KNN with the approximate leave-
one-out classification accuracy can be written as:

ξ(w) = 1
Q

∑
i

∑
j

yi jPi j, (20)

where yi j = 1 if and only if yi = yj and yi j = 0 otherwise. Q
is the total number of samples.

We follow [24] to adopt the NCA strategy into a feature
selection task by including a weighting score, which results
in a nearest neighbor-based feature weighting methods for
reducing the high dimensionality of the input vector. Such a
method modifies the original KNN and improves the classifica-
tion performance in the leave-one-out cross-validation method.
Here, Eq. 20 is modified for approximating the leave-one-out
classification accuracy in KNN as:

ξ(w) =
∑
i

∑
j

yi jPi j −λ
d∑
l=1

w2
l , (21)

where λ > 0 is a regularization parameter and can be tuned
via cross-validation, which replaces the functionality of the
coefficient 1

Q in Eq. 20, wl is the scores that defines the
ranking of the features, and it is obtained by gradient decent
method. Essentially, by using the feature weighting method
within the context of KNN, we identify the extent of redun-
dancy in the features and select the optimal feature subset for
better classification.

C. ReliefF

The original RELIEF algorithm [42] is used to evaluate
the features of the data samples, resulting in a value that
distinguishes a sample from it neighbors. The quality of the
features is represented by its weight, which is estimated from
two neighbor samples, including one nearest value from the
same class (i.e. nearest hit) and another nearest value from a
different class (i.e. nearest miss). The weighting score vector
of the feature l on the sample r , wl(r), is estimated using
the normalization of all Q training samples with the following
equation:

wl(r) = wl(r)−
diff(l,r, h)

Q
+

diff(l,r,m)
Q

, (22)

where r is the feature value of the considering sample, h
is the feature value of the nearest hit sample, and m is the
feature value of the nearest miss sample, diff(l,r, h) calculates
the distance between samples r and h using the lth feature,
diff(l,r,m) calculates that between samples r and m. However,
RELIEF is limited to only two-class problems and is sensitive
to noisy data samples.

Therefore, ReliefF [43] is proposed to improve the reliabil-
ity in estimating the weight and has been extended to handle
multi-class data sets while retaining the same computational
complexity. Here, the K-nearest neighbor (KNN) concept is
adopted to find the k nearest hit observations and k nearest
miss observations, instead of using one nearest neighbor in
each class as in Eq. 22, which improves the reliability of
weight approximation. A multiple-class problem is formulated
as finding one nearest miss, M(Φ), for each different class Φ
and averaging their contribution for updating the estimated wl:

wl(r) = wl(r)−
diff(l,r, h)

Q

+
∑

Φ,class(r)

P(Φ)
1−P(class(r)) ×diff(l,r,M(Φ))

Q
,

(23)

The final weighting score of the feature, wl is the summation
of difference among the sample and its neighbors from all Q
samples. It estimates the ability of features to separate different
classes.

VII. MOTION CLASSIFICATION

In supervised learning-based classification problems, the
Support Vector Machine (SVM) is a powerful classifier that is
commonly used to classify different categories of the data. It
maps the data to a higher dimensional space and separates
the data using hyperplanes. Such hyperplanes are optimal
boundaries that categorise new sets of data. The optimised
hyperplanes would maximise the margin among classes in the
training data.

Given an instance-label pair (pi,qi), i = 1, ..., l where pi is
a sample vector and qi ∈ {1,−1}l represent one of the two the
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categories in the training data, the original SVM [44], [45]
obtains the solution as an optimization problem as follow:

min
w,b,ξ

1
2
wTw+C

l∑
i=1

ξi

subject to qi(wT φ(pi)+ b) ≥ 1− ξi,
ξi ≥ 0.

(24)

where the feature vectors pi are mapped into the higher
dimensional space using the function φ, C > 0 is the penalty
parameter for the error. w is known as the weight vector, b
is the bias and ξ is the maximum margin. In Eq. 24, the idea
is to apply a linear hyperplane to identify the margin of each
data class as shown in Fig. 5 left.

Fig. 5. Support Vector Machine classifiers.

However, in a multiple classes problem, the linear SVM
with one hyperplane cannot separate multiple data classes.
As a solution, the one-against-one approach is proposed
[46], [47], in which for a M classes classification problem,
M(M−1)/2 classifiers are constructed and each of them trains
data from two classes. Given training data from the ith and
the j th classes, the solution can be found by the following
objective function:

min
wi j,bi j,ξ i j

1
2
(wi j)Twi j +C

∑
t

(ξi j)t

subject to (wi j)T φ(pt )+ bi j ≥ 1− ξi jt , if pt in the ith class,

(wi j)T φ(pt )+ bi j ≤ −1+ ξi jt , if pt in the j th class,

ξ
i j
t ≥ 0.

(25)
where wi j is the weighting vector, bi j is the bias and ξi j is the
maximum margin. A voting strategy is implemented to find the
class label that fits the best to the testing data. In particular,
the class label that has a maximum number of votes from all
binary classifiers is considered to be the best fit class label.

In a complex data space, it may be difficult to apply
linear hyperplanes to separate the classes. Therefore, kernel
functions, K(pi, pj) ≡ φ(pi)T φ(pj), are proposed to construct
higher dimensional hyperplanes, as shown in Fig. 5. In this
study, we evaluate three popular kernel functions including
linear, polynomial, and radial basis function (RBF) as defined
below:
• Linear:

K(pi, pj) = pTi pj (26)

• Polynomial:

K(pi, pj) = (γpTi pj + r)d, γ > 0 (27)

• Radial basis function (RBF):

K(pi, pj) = exp(γ | |pipj | |2), γ > 0 (28)

where, γ, r , and d are kernel parameters that need to be opti-
mized during the construction of the model. In this research,
we implemented a multi-class SVM using the library LIBSVM
[47]. We conducted a grid-search to tune the kernel parameters.

VIII. EXPERIMENTAL RESULTS

Using the database constructed in Section IV, we evalu-
ate the performance of our proposed method. Our primary
experiment setup utilizes only the three unhealthy classes
for classification, while our secondary setup utilizes all four
classes including the healthy class. The former is considered
practically important to the service providers as the majority
of patients only access health-care services only when they
are unhealthy. The latter includes a healthy control group to
verify the performance of the system.

A. Evaluation on Different Kinematics Features

Table II summarises the numerical statistics of all features
extracted from the participants’ motion. For example, for
6DSymRJDP, the average value of the features is 17.2±6.81
millimetre in the muscle weakness category. Notice that 3DR-
JDP and 6DSymRJDP have the same statistics because of the
similar ways the features are defined, but the former has more
items in the feature vector, which affects the performance of
classification.

We analyse the values of the features using ANOVA to
identify the significance of variance using the primary setup.
We define p-value <= 0.05 as an indication of significant
variance, showing that the features can be used to differentiate
different types of gait disorders. The results are shown in the
fifth column of Table II. It can be observed that features such
as 3DJA and 4DJA have high p-values, meaning that there
is not sufficient evidence to reject the null hypothesis. The
three better features for gait classifications are 6DSymRJDP,
3DRJDP, and 3DRJD.

Next, we test the performance of the features by using the
whole feature vectors for SVM classification. For each type of
feature, we experiment different SVM kernels including linear,
polynomial and radial basis function (RBF), and select the
best classification result. The accuracy is obtained using the
leave-one-out cross-validation strategy. As shown in the last
column of Table II, both of our proposed features, 3DRJDP
and 6DSymRJDP, outperform the other features. In particular,
6DSymRJDP performs the best by delivering an accuracy of
67.14%. This demonstrates that the relationship between joint
pairs carries more information for gait classification comparing
to the absolute values of individual joint features. Comparing
with 3DRJDP, 6DSymRJDP has only a half number of items
in the feature vector by pairing up logically relevant ones,
making it easier for the SVM systems to model the data and
interpret the diagnostic results.
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Feature Types Muscle Weakness Joint Problem Neurological Defect Healthy p-value Baseline Classification
3DJA −0.2±3.08 0.2±4.93 0.89±3.47 0.36±3.86 0.871 57.14
4DJA −1.2±0.54 −0.3±0.84 −0.4±0.93 −0.4±0.34 0.043 51.43

1DRJD 60.6±1.63 62.5±2.63 64.2±2.58 62.5±2.94 0.578 55.86
3DRJD 16.7±6.73 12.6±2.61 13.8±3.21 15.7±5.68 0.001 61.43

1DhipRJP 50.9±0.76 51.7±0.98 51.6±0.98 49.2±0.67 0.168 50.82
3DhipRJP −3.9±1.98 −6.1±3.75 −5.2±3.67 −5.4±2.11 0.389 57.14
3DRJDP 17.2±6.81 9.7±2.65 12.8±4.21 11.7±3.78 0.001 63.29

6DSymRJDP 17.2±6.81 9.7±2.65 12.8±4.21 11.7±3.78 0.001 67.14

TABLE II
THE NUMERICAL STATISTICS OF THE EXTRACTED FEATURES. P-VALUE AND BASELINE CLASSIFICATION REFERRED TO THE PRIMARY SETUP.

Features Baseline F-score NCA ReliefF
3DJA 57.14 83.17 75.71 78.57
4DJA 51.43 51.43 52.86 72.86

1DRJD 55.86 78.57 71.43 80.00
3DRJD 61.43 81.43 71.43 65.71

1DhipRJP 50.82 52.86 51.43 48.29
3DhipRJP 57.14 64.29 60.00 62.86
3DRJDP 63.29 82.43 72.86 76.86

6DSymRJDP 67.14 84.29 74.82 80.00

Features Baseline F-score NCA ReliefF
3DJA 49.71 78.61 72.81 74.56
4DJA 46.32 47.82 45.67 68.43

1DRJD 47.78 74.54 68.31 71.34
3DRJD 55.16 75.43 72.56 58.43

1DhipRJP 41.56 44.65 47.32 51.71
3DhipRJP 48.91 59.71 53.45 57.43
3DRJDP 57.76 77.33 65.89 71.47

6DSymRJDP 60.17 79.17 69.78 72.43

TABLE III
CLASSIFICATION ACCURACY OF EACH FEATURE USING DIFFERENT
FEATURE SELECTION METHODS FOR (UPPER) THE PRIMARY SETUP

(LOWER) THE SECONDARY SETUP.

B. Evaluation on Different Feature Selection Methods

We compare different features under four different feature
selection strategies: the baseline method without any feature
selection, F-score, NCA and RelieF. The selected features
are concatenated as the feature vector for representing each
motion based on the selected key frames. They are fed as an
input vector into the SVM machine learning mechanism. For
each type of feature, we experiment with different numbers
of features and obtain the optimal value. We also experiment
with different kernels including linear, polynomial and RBF,
and use the value from the best one.

As shown in Table III, generally, the results with feature
selection outperform the baseline ones. Also, the best results
appear in the use of the F-score feature selection method.
Among eight different features, 6DSymRJDP and 3DRJDP
perform better than the other features under most of feature
selection methods. The highest accuracy 84.29% (primary
setup) and 79.17% (secondary setup) appears when we use
6DSymRJDP under F-score feature selection method. With
NCA, the best accuracy achieved is 75.71% (primary setup)
and 72.81% (secondary setup) with the 3DJA feature type,
while our proposed feature 6DSymRJDP achieves comparable
values. With ReliefF, by using the default value of k = 10 into
KNN [43], the best classification performance is 80.00% of
accuracy on both 1DRJD and 6DSymRJDP (primary setup),
and 74.56% on ReliefF (secondary setup).

Features Linear Polynomial RBF
3DJA 74.29 83.17 51.43

3DRJD 81.43 80.00 55.71
3DRJDP 76.57 82.43 59.17

6DSymRJDP 81.43 84.29 62.86

Features Linear Polynomial RBF
3DJA 70.15 78.61 50.65

3DRJD 77.64 75.43 46.34
3DRJDP 74.14 77.33 54.23

6DSymRJDP 78.45 79.17 56.46

TABLE IV
THE PERFORMANCE OF SVM KERNELS WITH F-SCORE FOR (UPPER) THE

PRIMARY SETUP (LOWER) THE SECONDARY SETUP.

Fig. 6. Feature selections according to different kernels for 6DSymRJDP with
F-score.

F-score utilizes the whole training set in evaluating the
suitability of a feature in classification, while NCA and ReliefF
consider different sub-parts of the training set under the KNN
algorithm. Since many databases in this field are small, F-score
has an advantage of utilizing the full data for a more robust
performance. This explains why it outperforms other feature
selection methods in our experiments.

C. Kernel and Classifier Analysis

We evaluate the kernel selection process using F-score as
the feature selection algorithm, as it performs the best in the
previous experiment. We evaluate the features that perform
well with F-score (>80%), including 3DJA, 3DRJD, and our
prposed features 3DRJDP and 6DSymRJDP.

Table IV shows the experiment of all kernels. The poly-
nomial kernel generates the best results with 6DSymRJDP
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Features SVM Neural Network Decision Tree
3DJA 83.17 51.32 79.19

3DRJD 81.43 54.89 77.52
3DRJDP 82.43 53.13 79.63

6DSymRJDP 84.29 56.87 81.24

Features SVM Neural Network Decision Tree
3DJA 78.61 45.71 71.15

3DRJD 75.43 48.95 73.34
3DRJDP 77.33 50.67 72.65

6DSymRJDP 79.17 52.57 74.33

TABLE V
THE PERFORMANCE OF DIFFERENT CLASSIFIERS WITH F-SCORE FOR

(UPPER) THE PRIMARY SETUP (LOWER) THE SECONDARY SETUP.

using F-score, with the classification accuracy of 84.29%
(primary setup) and 79.17% (secondary setup). In general, the
polynomial kernel performs better than the linear and RBF
kernels, showing that the polynomial kernel models the motion
features better.

Fig. 6 shows the classification accuracy against the number
of features selected using F-score with 6DSymRJDP using
the primary setup. It can be observed that selecting more
features may not necessary improve the classification accuracy.
The classification accuracy starts to drop when the number
of features exceeds the modelling power of the classification
system. The best result is obtained with the polynomial kernels
with 48 features selected, indicated by the orange line.

To evaluate different classifiers, we compare the perfor-
mance of SVM (using the polynomial kernel), neural network
and binary decision tree. The neural network is implemented
using a 4-layer structure. The neuron number of the input
(i.e. first) layer and the output (i.e. last) layer is the feature
dimensions and the number of classes respectively. The second
layer has 50% neurons of the first one, and the third layer
has 50% neurons of the second one, thereby implementing a
typical triangle structure. The sigmoid function is used as the
activation function. The binary decision tree does not require
any particular parameter setup. Table V shows the results and
SVM achieves the best accuracy of 84.29% (primary setup)
and 79.17% (secondary setup). Neural networks typically
require a larger amount of training data, and therefore perform
sub-optimally on smaller clinical databases. Decision trees
have weaker generalization power comparing to polynomial
SVM, as they only utilize planer decision boundaries.

IX. CONCLUSION AND DISCUSSION

In this paper, we propose an automatic gait analysis frame-
work for musculoskeletal and neurological disorder diagnosis.
We capture the gait motion from 45 Thai people with ages
ranging between 61 and 91 according to four disorder cate-
gories: healthy, muscle weakness, joint problem and neurolog-
ical defect. After that, we map all the gait motion into fixed
length sequence with dynamic time warping and represent
the warped gait sequences with different gait features. Then,
we experiment with several combinations of the optimal joint
set, feature extraction methods, and classifiers for the disorder
diagnosis. The results show that using our proposed feature

6D Symmetric Relative Joint Displacement (6DSymRJDP) can
achieve better results (84.29%) than using other gait features.

Since it is inconvenient and uncomfortable for the older
people to wear suits and markers for motion capture, one
future direction is to explore RGBD motion sensing hardware
such as the Microsoft Kinect, which does not require capture
suits nor calibrations. A benefit is that such a type of motion
capture equipment can be deployed in care homes for everyday
motion tracking and pre-diagnosis, thereby helping to identify
disorders in the early stage.

Also, while our system allows the machine to automatically
extract features for disorders classification, it may be enhanced
by introducing prior medical knowledge to the existing fea-
tures. We envisage that a combination of human knowledge
and machine understanding would give a better description on
these problems.

While there can be overlapping between different classes
of disorder, when selecting subjects for motion capture, we
found that there were not enough subjects suffering from more
than one disorder to form a representative class. Therefore, we
did not include those subjects. One of our future directions
is to gather enough data of subjects suffering from multiple
types of disorder and design a corresponding classification
system. With enough data, one possible idea is to implement
one binary classifier for each disorder to tell if the patient
is suffering from such a disorder or not. Multiple binary
classifiers are then combined to form the full system.

The gender bias in our database is unfortunately unpre-
ventable due to the local culture. In Thailand where the
data is collected, females have much stronger local social
networks comparing to males. These networks are more open
to voluntary works including ours - working with technicians
to capture motion data. In our current database, we do not
have sufficient data to evaluate if the gender bias has affected
the experimental accuracy. One future direction is to analyze if
(1) there is a correlation between genders and the types of gait
disorder, and (2) the gender ratio would affect the performance
of the proposed framework.
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