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Multi-Task Spatial-Temporal Graph
Auto-Encoder for Hand Motion Denoising
Kanglei Zhou, Hubert P. H. Shum, Senior Member, IEEE , Frederick W. B. Li, Xiaohui Liang

Abstract—In many human-computer interaction applications, fast and accurate hand tracking is necessary for an immersive experience.
However, raw hand motion data can be flawed due to issues such as joint occlusions and high-frequency noise, hindering the interaction.
Using only current motion for interaction can lead to lag, so predicting future movement is crucial for a faster response. Our solution
is the Multi-task Spatial-Temporal Graph Auto-Encoder (Multi-STGAE), a model that accurately denoises and predicts hand motion by
exploiting the inter-dependency of both tasks. The model ensures a stable and accurate prediction through denoising while maintaining
motion dynamics to avoid over-smoothed motion and alleviate time delays through prediction. A gate mechanism is integrated to
prevent negative transfer between tasks and further boost multi-task performance. Multi-STGAE also includes a spatial-temporal graph
autoencoder block, which models hand structures and motion coherence through graph convolutional networks, reducing noise while
preserving hand physiology. Additionally, we design a novel hand partition strategy and hand bone loss to improve natural hand motion
generation. We validate the effectiveness of our proposed method by contributing two large-scale datasets with a data corruption
algorithm based on two benchmark datasets. To evaluate the natural characteristics of the denoised and predicted hand motion, we
propose two structural metrics. Experimental results show that our method outperforms the state-of-the-art, showcasing how the multi-
task framework enables mutual benefits between denoising and prediction.

Index Terms—Hand motion denoising, Hand motion prediction, Graph convolutional network, Multi-task learning
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1 INTRODUCTION

W ITH the rapid advancement of Human-Computer
Interaction (HCI) techniques, human hands play a

vital role in performing operations such as grasping and ma-
nipulating objects [42], [58]. In many HCI applications [57]
such as Virtual/Augmented Reality (VR/AR), providing an
immersive experience for users relies on quickly tracking
human hands and accurately estimating the corresponding
hand poses [27], [40]. That said, on the one hand, the
complex articulations, self-occlusion, and self-similarity of
hands make immersive interaction challenging [54]. In ad-
dition, prolonged operation and movement disorders such
as Parkinson’s disease may lead to involuntary handshakes
[23], resulting in interaction failures. On the other hand, the
user experience deteriorates when applications lag due to
delays in the processing and rendering pipeline [45]. Pre-
dicting future motion would be beneficial for pre-processing
and improving response time [38].

The first challenge of inaccurate tracking and hand-
shakes can be tackled by denoising. Existing motion denois-
ing algorithms [8], [17], [18], [23] mainly focus on human

• K. Zhou is with the State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University, Beijing, China.
E-mail: zhoukanglei@buaa.edu.cn

• H. Shum and F. Li are with the Department of Computer Science, Durham
University, Durham DH1 3LE, United Kingdom.
E-mail: {hubert.shum, frederick.li}@durham.ac.uk

• X. Liang is with the State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University, Beijing, China, and also with Zhong-
guancun Laboratory, Beijing, China.
E-mail: liang xiaohui@buaa.edu.cn

Manuscript received XXX; revised XXX.
(Corresponding author: Xiaohui Liang)

(a) Denoising task

Encoder Decoder

(b) Prediction task

Encoder Decoder

(c) Multi-task

Shared 

Encoder

 (d) AR application

Denoising 

Decoder

Prediction 

DecoderDynamics preserving

Noise removing

Latent 

space

Fig. 1. An illustration of our main idea. We integrate denoising (a) and
prediction (b) to propose a multi-task method, which can be used in AR
applications (d). Denoising removes noise from the latent space, result-
ing in more accurate and stable predictions, while prediction maintains
motion dynamics, preventing over-smoothed motion.

body data. Due to the high degree of freedom of the hand
model [41], the relative noise amplitude of hand motion
data is larger than that of human motion data. Therefore,
applying these human motion denoising methods directly
to hand motion data is ineffective. Also, the use of Con-
volutional Neural Networks (CNN) or Recurrent Neural
Networks (RNN) to separately model spatial dependence
and temporal relationships is insufficient to identify unified
spatial-temporal patterns in hand motion data, as these
methods [8], [17], [18] do not satisfy structural constraints or
provide temporal coherence. Furthermore, denoising alone
often leads to over-smoothing problems [5], which results
in a loss of temporal dynamics. Thus, it may be difficult to
understand user intention accurately.

The second challenge of improving system response
speed can be tackled by prediction. Existing motion pre-
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diction algorithms [6], [33], [34] mainly focus on human
body data, while a few [6] are designed for hand motion
prediction. It is more challenging to realize real-time hand
gesture prediction as the hand structure is more complex
than the human body [6]. Therefore, simply applying the
human motion prediction algorithms [34] to the hand may
not guarantee optimal performance. It is also difficult to
adapt hand prediction methods [6], [33] to real-world appli-
cation scenarios as they have poor generalization using tra-
ditional statistical learning methods. Moreover, prediction
alone ignores the noise that exists in the raw data, making
it difficult to accurately predict future dynamics that align
with the user’s intention.

We observe that hand motion denoising and prediction
are highly interdependent and mutually beneficial. De-
noised motion allows a more accurate and stable prediction,
while prediction helps inform the motion dynamics, thereby
preventing denoising from creating over-smoothed motion.
Therefore, our core insight is to incorporate denoising and
prediction to remove noises from the latent space while
maintaining motion dynamics. As hand motion data is a
sequence of natural graphs, spatial-temporal graph convo-
lutional networks (STGCN) have achieved great success in
human motion analysis [43] for feature representation. This
motivates us to leverage STGCN to model the structural pri-
ors and the temporal coherence for hand motion denoising
and prediction.

In this paper, we propose Multi-STGAE, the Multi-task
Spatial-Temporal Graph Auto-Encoder, for jointly denoising
hand motions and predicting future movements. As visu-
alized in Fig. 1, Multi-STGAE is essentially a two-branch
network with a shared encoder, by exploiting the inter-
dependency of the two tasks. Notably, we demonstrate that
denoising hand motion and predicting future motion are
two interconnected tasks so that the multi-task framework
achieves better performance than the single denoising task
through domain sharing between complementary tasks. To
avoid the possible negative transfer between the two tasks,
a simple yet effective gate mechanism has been developed
in contrast to the previous work [9]. This allows the ef-
fective information to be transferred to the corresponding
downstream branch flows, thus enhancing multi-task per-
formance further.

The core of Multi-STGAE is the spatial-temporal graph
autoencoder block, which explicitly models the structural
priors of hands and the temporal coherence of motion
through spatial-temporal graph convolutional networks. It
enables the transfer of corrective data from reliable neigh-
boring joints to those that are noisy, reducing the noise
while maintaining the physiological constraints of the hand.
Different from the hand motion compensation method [23]
that only relies on the physic-connected connections, our
method utilizes both the hand symmetry structure prior
and the temporal correlation to enhance the information
compensation. Additionally, we explore several learning
strategies for graph structures in order to increase their
flexibility and adaptability.

To evaluate the performance of our method, we have
created two large-scale datasets by applying a data cor-
ruption algorithm on NYU and SHREC, two hand pose
estimation and gesture recognition datasets. For the purpose

of increasing the diversity of the dataset, the selected two
datasets have different topological structures. The experi-
mental results demonstrate that our method outperforms
the state-of-the-art, showcasing the benefits of our multi-
task framework for denoising and prediction.

Our preliminary results of a denoising-only method have
been presented in [59]. This paper has made significant
advancements and presents the following technical novelty.
(1) We have designed and implemented a new multi-task
framework for hand motion denoising and prediction, al-
lowing a stable and fast interaction experience for users.
(2) We have included new materials in the paper, including
the design and justification to explain the new multi-task
framework, with a light touch to explain how individual
components of [59] are adapted. (3) We have conducted
new experiments to fully evaluate the proposed system with
an additional dataset, SHREC, alongside the NYU dataset,
to provide a comprehensive and diverse evaluation of our
system. We evidence the mutual benefit of the two tasks
and the performance advancement over the state-of-the-
art, including [59]. (4) We have conducted new qualitative
experiments, which are presented in the paper as well as a
newly created video.

Our main contributions are summarized as follows:

• We propose a novel multi-task network that con-
siders prediction and denoising at the same time,
exploiting their inter-dependency to boost the per-
formance of both tasks. The source code is available
at https://github.com/ZhouKanglei/Multi-STGAE

• We propose a simple yet effective gate mechanism to
avoid the negative transfer between different tasks,
which can further improve the performance of de-
noising and prediction.

• We propose an improved hand motion denoising
method built upon stacked spatial-temporal graph
convolutional blocks (STGCBs), which utilize a novel
skeleton partition strategy along with a dynamic
self-attention mechanism to preserve the structural
constraints of hands.

• To facilitate the algorithm performance verification,
we propose two new synthesized datasets, which can
be used as a benchmark for hand motion denoising
and prediction.

The remainder of this paper is organized as below. We
first review the related works in Sect. 2. Then, we elaborate
on the proposed multi-task framework in Sect. 3. We vali-
date the proposed method with a wide range of experiments
in Sect. 4. Finally, we conclude the whole paper and discuss
future directions in Sect. 5.

2 RELATED WORK

We first review prior works on denoising and predicting
motion data. Then, focus the discussion on graph networks
for modeling human motion. Finally, we review related
works on multi-task learning.

2.1 Motion Denoising
There are two main categories of methods for denoising
motion data: prior knowledge-based and machine learning-
based approaches. While most existing works focus on

https://github.com/ZhouKanglei/Multi-STGAE
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denoising motion data for human bodies, these methods
provide valuable insights and inspiration for developing
techniques to remove noise from hand motion data.

Motion data is a spatial-temporal signal, and two priors
can be used to identify and remove noise: the spatial de-
pendency between joints [25] and the temporal relationship
over time [2], [13], [30], [32]. The spatial dependency means
that the motion of different joints in the body is highly
correlated, aiding in identifying the likelihood of noise at a
certain joint based on the motion patterns of adjacent joints.
Li et al. [25] proposed BoLeRO, which uses hard and soft
constraints to preserve bone length constraints. Temporal
relationship over time refers to the fact that motion data
is a time-series signal, and the motion patterns of adjacent
frames are often highly correlated. Lou et al. [32] proposed a
data-driven method for learning filter bases from motion
data and utilizing temporal relationships to estimate un-
derlying motion trajectories and remove noise. In contrast
to using motion databases, Feng et al. [13] incorporated
the low-rank structure and temporal stability properties of
motion data to refine motion capture data.

Building upon prior works [7], [14], [35], [53], machine
learning-based methods [17], [18], [20], [23] for denoising
motion data have been developed. Holden et al. [17], [18]
proposed a convolutional auto-encoder to learn the motion
manifold and reconstruct corrupted motion data. Kim et
al. [20] introduced a bidirectional recurrent neural network
with an attention mechanism to improve denoising accuracy
by emphasizing important input poses. Leng et al. [23]
proposed a method to estimate hand pose during tremors
using a WaveNet and a graph neural network. However,
non-adjacent joint constraints were not taken into account,
which is an important factor for denoising.

The machine learning-based method is preferred over
the prior knowledge-based method as it addresses limita-
tions such as poor generalization and manual parameter
setting [47]. Despite achieving significant results, machine
learning-based methods are limited by the absence of struc-
tural relationships between joints. To this end, our proposed
method incorporates hand-prior knowledge (in the form of
graph design) into the machine learning system, thereby
combining the benefits of both approaches.

2.2 Motion Prediction

We focus on reviewing deep learning-based methods for
predicting human motion. As hand and body motion pre-
diction share many similarities, while there are fewer exist-
ing methods for hand motion prediction [6], [33], we widen
our scope to include body motion prediction, which could
potentially offer insights into predicting hand motion.

These methods can be categorized based on the network
design [34]. Spatial-temporal RNN [37] has been proposed
for human motion prediction that utilizes skeletal informa-
tion for feature extraction. Batch prediction addresses the in-
effective temporal modeling of motion multi-modality and
variances, resulting in accurately predicting long-duration
motions [50]. To improve prediction performance, some
RNN variants [15], [44] have been proposed. CNNs [9],
[10], [26], [56] have also been incorporated due to their
ability to capture spatial dependencies. GNN is adaptable

for representing the human skeleton, making it widely used
in human motion prediction. Li et al. [26] used a multi-scale
graph to model the internal relations of the human body for
feature learning and fused them across scales. They modeled
temporal relationships using GRU. Additionally, Zhong et
al. [56] employed Temporal Convolutional Networks (TCN)
to predict future dynamics. GANs have also been used for
learning the distribution of motion sequences and gener-
ating more diverse and realistic motions than determinis-
tic models [16], [22], [31], producing realistic motions. In
this context, Barquero et al. [1] delved into behavior pre-
diction during dyadic conversations, emphasizing full-body
dynamics, and showcased that transformer-based models,
particularly their temporal transformer, achieve state-of-
the-art results. Concurrently, Palmero et al. [39] underscored
challenges in behavior forecasting, hinting at the potential
of multi-modal architectures in future research.

Overall, there are still many challenges to overcome in
motion prediction, such as dealing with noisy or incomplete
historical motion sequences [37]. The objective of our work
is to investigate how incomplete observation data can be
reconstructed into complete data and to predict the future
dynamics of the motion.

2.3 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [21], [51] aggregate
information from neighbors and learn intrinsic features,
making them ideal for exploiting the structural constraint
relationships between human joints. Due to the large quan-
tity of time-series data available, STGCN and its variants
have become very popular for this task.

STGCN is a powerful method that combines GCN with
Long Short-Term Memory (LSTM) or TCN. It has been
widely used in action recognition [43], [52] and time-series
forecasting [50], among other fields [3]. Yan et al. [52] first
proposed STGCN for skeleton-based action recognition,
where GCNs handle spatial modeling and TCN focuses
on temporal modeling, allowing both spatial and temporal
patterns to be learned simultaneously. This approach has
become one of the most commonly used paradigms for pro-
cessing human motion data. Shi et al. [43] further improved
the performance of STGCN by introducing a self-attention
mechanism to learn an adaptive adjacent matrix. Cai et al.
[3] extended STGCN to 3D pose estimation by exploiting
multi-scale features in graph-based representations.

Motivated by the success of STGCN, we propose a novel
approach called STGAE [59] that combines STGCN with a
hand skeleton partitioning strategy based on hand symme-
try priors to effectively denoise hand motion data. However,
there is a risk of over-smoothing the results and losing
temporal dynamics with existing STGCN-based methods.
To address this, our method incorporates motion prediction
and motion denoising into a multi-task architecture to en-
hance temporal dynamics and improve performance.

2.4 Multi-Task Learning

Multi-task learning is a powerful technique that has been
applied to various applications [12], [19], [55], and it has
shown promising results in improving the performance of
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Fig. 2. Framework overview of our proposed method Multi-STGAE: we utilize the prediction task to propose a multi-task framework for hand motion
denoising. Through this framework, the denoised result is capable of preserving the temporal dynamics and the time delay problem can be greatly
alleviated. In this way, it is possible to provide users with a satisfying experience during the interaction.

individual tasks by leveraging shared feature representa-
tions. In this section, we primarily review works of multi-
task learning to human motion processing [9], [24], [28].

Learning multi-task [55] is a paradigm for tackling
related tasks simultaneously while constructing a shared
structure to enhance the overall performance of the task,
which can be viewed as an inductive approach to knowl-
edge transfer. To improve human motion prediction, a
multi-task framework was proposed by Cui et al. [9], which
focused on accurately forecasting future human actions and
repairing incomplete observations. Li et al. [24] also pro-
posed a multi-task training paradigm for low-level human
skeleton prediction and high-level human action recog-
nition, resulting in improved prediction performance. In
skeleton-based action recognition, Lin et al. [28] suggested
using multiple tasks such as motion prediction and jigsaw
puzzle recognition to learn more general representations for
better recognition performance.

Motivated by previous research in the human body
motion domain [9], [50], we demonstrate that hand motion
denoising and prediction are related tasks. By leveraging
shared feature representations and learning a joint optimiza-
tion, the model can better capture complex spatial-temporal
patterns in the data, leading to better performance in both
denoising and prediction tasks.

3 MULTI-TASK SPATIAL-TEMPORAL GRAPH
AUTO-ENCODER (MULTI-STGAE)

We propose Multi-STGAE, an efficient multi-task frame-
work that enhances hand motion denoising and prediction
by incorporating hand structural priors and temporal mo-
tion coherence. First, it removes noises from the input hand
motion, facilitating a better experience of hand motion-
based human-computer interaction. Second, it addresses the
interaction delay problem and prevents dynamic informa-
tion loss of the denoising result by using the prediction
task to forecast future motion. We define the problem and
provide an overview of the proposed framework in Sect. 3.1.
The entire multi-task architecture is elaborated in Sect. 3.2,

followed by a detailed description of the basic spatial-
temporal graph convolution block in Sect. 3.3. Lastly, the
loss function for training is described in Sect. 3.4.

3.1 Problem Definition and Framework Overview

Considering a historical sequence of raw hand motion data
X̃ ∈ RT×N×3 that consists of 3D coordinates with N joints
within a temporal window of T frames, our multi-task
framework Multi-STGAE aims to simultaneously recover
the clean motion X ∈ RT×N×3 and predict the future
motion Y ∈ R∆T×N×3. As a result, we can obtain the
denoised motion X̂ ∈ RT×N×3 and the predicted motion
Ŷ ∈ R∆T×N×3, which are supervised by the ground truth
motions during the training phase. Practically, it is difficult
to construct the corresponding clean motion from the col-
lected raw motion data with noises for training purposes. In
Sect. 3.2, we detail the network architecture of the proposed
multi-task framework. It should be noted that both the
encoder and the two decoders are stacked with several
spatial-temporal graph convolution blocks (STGCB), which
is elaborated in Sect. 3.3.

One core reason for the lack of research in hand motion
denoising and prediction is the lack of benchmark datasets.
To this end, we contribute two new large-scale datasets by
corrupting the clean motion X to simulate the raw motion
X̃ with errors. The details of the data synthesis process will
be described in Sect. 4.1.

The overview of the framework is shown in Fig. 2. (a)
The corrupted motion data X̃ = {x̃1, x̃2, · · · , x̃T } is first
fed into a shared motion encoder (SME) that projects the
input to a compact and versatile latent space. By sharing a
latent space, both denoising and prediction branches can
remove noise while maintaining temporal dynamics by
regularizing the latent representation space. Because the
latent representation may contain independent information
components between different tasks, a simple yet effective
gating mechanism is used to prevent the latent representa-
tion from causing harm to others. (b) The denoising branch
involves passing the shared latent variable through the
denoising gating unit (DGU) and the motion denoising



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

3
V

T

32
V

T

32
V

T

64
V

T

64
V

T

128
V

T

G

G

64
V

T

64
V

T

32
V

T

32
V

T

3
V

T
+

3
V

T

64
V

T

64
V

T

32
V

T

32
V

T

3

V

∆T
+

3

V

∆T

Predicted
output Ŷ
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decoder (MDD) in order to obtain the noise signal, and the
denoising result X̂ = {x̂1, x̂2, · · · , x̂T } is finally obtained
using a skip connection. (c) In the prediction branch, the
shared latent variable is added to the positional encoding
(PE) after passing through the prediction gating unit (PGU).
By introducing the PE module, our method is injected with a
positional signal that ensures the sequential property of the
motion data as a time series.Then, the future motion offset is
determined after passing through the motion prediction de-
coder (MPD). The predicted result Ŷ = {ŷ1, ŷ2, · · · , ŷ∆T }
is finally obtained by adding the seed pose x̂T from the
denoised branch.

3.2 The Multi-Task Architecture

Both noises (e.g., jitters) and temporal movement dynamics
(e.g., grasping) may correspond to the high-frequency com-
ponent of the hand movement, making them difficult to be
distinguished. Therefore, the key to motion data cleanup
is to recognize noises from high-frequency signals. Existing
work [8], [17], [59] may not preserve motion dynamics
when removing noise as they do not take into account the
possibility of losing dynamic information. An insufficient
denoising intensity easily results in residual noise, whereas
an excessive denoising intensity removes motion dynamics.
In both cases, discontinuous denoising results may fail to
confirm the users’ intention, resulting in interaction failure.

Our main idea is to incorporate an auxiliary task to
improve the denoising performance while preserving the
temporal dynamics. Therefore, the choice of the auxiliary
task is important for preserving dynamic information and
minimizing the negative effects of the denoising process.
We choose motion prediction for two reasons: firstly, his-
torical motion data that is free of noise facilitates reliable
predictions, and secondly, historical information that main-
tains dynamics allows producing continuous predictions.
Simultaneously learning tasks of denoising noisy observa-
tions and predicting future dynamics in motion prediction
produces stable and ahead-of-time motion data that better
confirms users’ intentions. This is in contrast to directly
predicting future dynamics, which cannot achieve this goal.
As a result, the proposed multi-task framework outperforms
any single task. Fig. 3 shows the detailed architecture of our
multi-task framework, constructing a shared latent space to
enhance the overall performance of the task, in which the
three core modules are explained below.

V

T

1

T

1

T

1

T

1

T
+

1

T

V

1
V

1

V

1
V

1

+
1

T

×

V

T
� +

V

T

Input Output

Attention map

Shared 1× 1

conv layer

Sigmoid

Sigmoid
Spatial
pooling

Temporal
pooling

Fig. 4. The network architecture of a gating unit. It allows the network
to control what information should be propagated through the layers.

3.2.1 The Shared Motion Encoder
As motion denoising and motion prediction are intercon-
nected tasks, it is possible for them to share information for
mutual benefit. By sharing a common encoder for extract-
ing the spatial-temporal patterns, we regularize the latent
space with both tasks, enabling the multi-task framework to
outperform any individual task.

Through the SME module, we can obtain the latent
representation as:

H = enc(X̃), (1)

where enc(·) denotes the encoding operation. To increase
the capacity of the network, the SME module stacks five
STGCBs, whose structure will be explained in Sect. 3.3.2.

Since the original feature space has limited capacity, it is
difficult to distinguish motion from noise. Motivated by pre-
vious STGCNs [3], [43], [52], which demonstrate that the hi-
erarchical assimilation of elementary features into intricate
structures is facilitated by augmenting channels in deeper
layers, we adopt a similar architecture, which offers dual
benefits by increasing channel dimensions. Firstly, it allows
the allocation of a mere fraction of the new channels to noise,
leaving a predominant segment for pertinent data, thereby
sharpening the network’s focus on significant information
and restraining interference. Secondly, the weights of each
dimension are learned through back-propagation from the
task-related loss, thereby resulting in larger weights for use-
ful information and smaller ones for noise. Consequently, in
our design, the channels for the five respective blocks are
designated as 64, 64, 128, 128, and 256.

3.2.2 The Denoising Branch
The denoising branch is used to separate the noise in the
latent space from the original data so that the original
signal can be reconstructed. Additionally, the shared latent
space contains independent signals of the two tasks, which
inhibits the performance of the other. We achieve this by
utilizing a novel gating mechanism that controls the effec-
tive flow of information. As shown in Fig. 3, the denoising
branch consists of a gate (DGU) and a decoder (MDD).

Denoising Gating Unit. The DGU module aims at
providing effective information for motion reconstruction.
Through the feature refinement process, noise and motion
context information can be separated easily, and irrelevant
features will be shielded from denoising. Fig. 4 shows its
network architecture. It distinguishes motion context in-
formation from the latent space by selectively passing or
filtering out information based on the learned gating values.
The gating values are learned from the latent representation
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and allow the network to control the flow of information
within the architecture. In both the spatial and temporal
dimensions, the input tensor is first pooled with both the
average and maximum methods. Following a 1×1 convolu-
tional layer, the two pooling features are combined for two
domains, respectively. Next, the attention map is obtained
by multiplying the obtained activation features with a size
that is consistent with the input tensor. Lastly, the input
tensor is multiplied by the attention feature map before a
skip connection is used to obtain the output feature. In the
way, we can obtain:

Hd = gd(H), (2)

where gd(·) denotes the operation of the DGU module, and
Hd represents the refined feature for the denoising branch.

Motion Denoising Decoder. The MDD module aims at
reconstructing the clean motion from the refined feature. As
an inverse process of encoding, decoding is the process of
converting data from the shared latent space into an output
space. Rather than reconstructing the original signal directly,
we learn an offset between the raw motion and its clean one,
instead of the absolute values, to reduce the difficulty of the
network. In this way, we obtain the denoised output:

X̂ = decd(Hd) + X̃, (3)

where decd(·) denotes the decoding operation for the de-
noising branch. The MDD module stacks five STGCBs with
the output channel numbers 128, 128, 64, 64, and 3.

3.2.3 The Prediction Branch
Since hand motion is inherently temporal, denoising hand
motion data without considering its temporal characteristics
may result in a loss of important information or even the
introduction of new artifacts. Motion prediction regularizes
the latent space by providing a temporal context for the
denoising process, preventing dynamic information loss.
Similar to the denoising branch, we also adopt a gating
unit (PGU) to refine the latent representation, followed by a
decoder (MPD) to predict future motion.

Prediction Gating Unit. The PGU module aims at distin-
guishing historical dynamics for predicting future motion
from the latent space. Through the module, we obtain:

Hp = gp(H), (4)

where gp(·) denotes the operation of the PGU module, and
Hp represents the refined feature for the prediction branch.

Motion Prediction Decoder. The MPD module aims at
forecasting future dynamics from the refined feature. Dif-
ferent from RNN-based methods [15], [44] that are based
on previously predicted poses to forecast the next frame,
we use TCN to forecast each frame independently due to
its fully parallelized property. Although the core compo-
nent of MPD integrates graph and temporal convolutions
within its spatial-temporal block (detailed in Sect. 3.3), it
does not innately comprehend the specific positions of data
points. To provide our model with this critical positional
information, especially vital when leveraging self-attention
mechanisms, we use positional embedding [49] to map

each frame number t to a vector and then inject it into
each time step of the input features of MPD. Considering
two indexes t1 and t2, the closer they are, the more similar
their respective positional embedded features are. In this
way, our non-autoregressive MPD clearly distinguishes the
input context at different positions, thus explicitly ensur-
ing the temporal continuity and the sequential relation of
the generated sequence. By predicting offsets instead of
absolute values, our model is more robust to variations in
motion. This is because the predicted offsets capture relative
motion between frames, which is often more consistent
across different instances of a particular motion. Through
the MPD module, we obtain the predicted output:

Ŷt = decp (Hp +P) + x̂T , (5)

where P is the positional embedding matrix, decp(·) de-
notes the decoding operation for the prediction branch, and
x̂T is the last frame of the denoised output. Notably, the
incorporation of the last frame into the prediction process
can be viewed as a supervisory mechanism for denoising,
thereby enhancing the denoising performance. While by-
passing the forward step of MDD for prediction might offer
efficiency, particularly in real-time contexts, our primary ob-
jective remained centered on achieving superior denoising.
Finally, the MPD module generates the smooth prediction
in parallel, in which each predicted frame is not affected by
the previous. The MPD module stacks five STGCBs with the
output channel numbers 128, 128, 64, 64, and 3.

3.3 Spatial-Temporal Graph Convolution
As a spatial-temporal time series, the hand skeleton se-
quence exhibits both spatial correlations among joints and
temporal patterns among frames. For both denoising and
prediction, it is essential to capture spatial-temporal pat-
terns. The hand motion data is first constructed as a spatial-
temporal graph. Then, we model the spatial-temporal rela-
tionships by stacking multiple spatial-temporal graph con-
volution blocks comprised of GCNs and TCNs.

3.3.1 Spatial-Temporal Graph Construction
The key idea behind our method is to combine the structural
priors and the temporal coherence of hand motions to
propose Multi-STGAE for denoising and predicting hand
motions. By pre-defining physic-connected and symmetry-
connected links between hand joints, the hand motion
data is constructed as a spatial-temporal graph for spatial-
temporal graph convolution.

We adapt previous efforts on skeletal action recognition
[43], [52] for modelling hand motion data as an undirected
spatial-temporal graph G = {V, E}. Unlike previous works
focusing on human body data, we propose a hand-specific
skeleton partition strategy based on the symmetry of the
hand topology. It aids in denoising by using information
from neighboring clean joints to compensate for noisy ones.
Simultaneously, joints with less noise contribute to a more
accurate prediction. This compensation relationship extends
beyond directly connected joints, with an extra connection
defined based on the compensation relationship between
joints corresponding to different fingers of the hand. For
example, a middle finger joint error can be compensated
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(a) (b) (c)

Fig. 5. Illustration of the spatial-temporal graph: (a) spatial connections,
(b) temporal connections, (c) spatial and temporal connections.

for by the corresponding counterparts of the index finger
and ring finger. This is referred to as a symmetry-connected
connection, and alongside the physical-connected connec-
tion, they both belong to spatial compensation relationships.
Additionally, there is a temporal compensation relationship
between corresponding joints over time.

A spatial-temporal graph comprises two basic elements:
a spatial graph as shown in Fig. 5(a) and a temporal graph
as shown in Fig. 5(b). In the spatial graph, the dependen-
cies between neighboring joints are depicted based on the
direct and indirect links between them. In the temporal
graph, the continuity between consecutive frames of hand
motion is represented. Generally, the initial node feature
vt,i ∈ R3 with respect to the t-th frame and the i-th
joint is comprised of 3D pose coordinates. The node set
V = {vt,i|t = 1, 2, . . . , T, i = 1, 2, · · · , N} contains all
joints in the entire hand motion sequence with T frames
and N joints. The edge set E = {vt,i ↔ vt,j ,vt−1,i ↔
vt|i = 1, 2, · · · , N, t = 2, 3, · · · , T} includes both direct and
indirect links. Thus, each joint vt,i has three kinds of neigh-
bors: physic-connected neighbors vt,j with direct intra-hand
edges vt,i ↔ vt,j , symmetry-connected neighbors vt,k with
indirect intra-hand edges vt,i ↔ vt,k, as well as temporal
neighbors vt−1,i and vt+1,i with indirect inter-frame edges
vt−1,i ↔ vt,i and vt,i ↔ vt+1,i. In this way, a clean spatial-
temporal neighbor can compensate for noisy joints through
the use of this effective hand skeleton partition strategy.

3.3.2 Spatial-Temporal Graph Convolution Blocks
We present a two-stage network to implement the spatial-
temporal graph convolution block (STGCB) as shown in
Fig. 6, with the two stages responsible for the spatial convo-
lution and the temporal convolution respectively. For the
l-th spatial-temporal graph convolution block, the input
H(l) ∈ RT×N×Cin is processed by graph convolution to
get the hidden representation Z(l) ∈ RT×N×Cmid , and then
Z(l) is processed by temporal convolution to get the output
H(l+1) ∈ RT×N×Cout , which is used as the input of the next.

The STGCB module is designed to extract intrinsic fea-
tures that are beneficial for motion denoising and prediction.
On the one hand, proper identification of clean and noisy
joints is crucial for determining the information compensa-
tion between joints. Misidentification can cause confusion
in the intrinsic features, leading to unfavorable results in
denoising and prediction. On the other hand, relying only
on the pre-defined topology in Sect. 3.3.1 may disregard
other joints that have potential compensation relationships,
affecting the denoising and prediction performance. For ex-
ample, when the thumb and middle fingertip touch during

N

T

N

T

G-Conv BN ReLU D

N

T

T-Conv BN ReLU

P DP

+

N

T/2

Input

Output

Fig. 6. The network architecture of the STGCB block. ‘G-Conv’, ‘T-
Conv’, ‘BN’, ‘P’, and ‘D’ denote the graph convolution layer, the temporal
convolution layer, the batch normalization layer, the pooling layer, and
the dropout layer, respectively.

the pinch gesture, they have an information compensation
relationship. To address these problems, we learn an adap-
tive graph topology using a self-attention mechanism.

Graph Convolution. We employ the graph convolution
operation to capture the similarity of neighboring joints in
space. As neighboring joints tend to have similar character-
istics, this operation helps to preserve the natural structure
of the hand. In the presence of noise, a corrupted joint
can be compensated by information from its clean neigh-
bors. Moreover, the use of graph convolution allows the
prediction to be performed in a latent space that is highly
representative of the hand’s spatial characteristics, such as
joint similarity and limits. This encourages the generation of
realistic hand poses that are consistent with the hand topol-
ogy, preventing unrealistic poses like overlapping fingers or
unnatural joint angles.

As can be seen in Fig. 5(a), there are two types of spa-
tial relationships between joints: direct (physic-connected)
neighbors and indirect (symmetry-connected) ones. We di-
vide the joint i and its direct and indirect neighbors into
a subset Si. If j ∈ Si, then set Aij to 1; if the joint j is
the direct/indirect neighbor of i, then set Aij

direct/A
ij
indirect

to 1. According to different relationships, the normalized
adjacency matrix Ã can be dismantled into several matrices
Ak ∈ RN×N where

∑
k Ak = Ã. In this work, we set

A1 = I, A2 = Adirect and A3 = Aindirect. In this way,
our graph convolution can be represented as:

Z(l) = σ

(
K∑

k=1

(
Λ̃

− 1
2

k AkΛ̃
− 1

2

k

)
H(l)W

(l)
k

)
, (6)

where K = 3, Λ̃ii
k =

∑
j A

ij
k + ϵ, and σ(·) denotes the RELU

activation function. We set ϵ to a little positive number (e.g.,
0.001) to avoid the empty row of Ak. The convolution kernel
W

(l)
k ∈ RCin×Cmid is applied for the k-th kind of neighbors.
Human hand motion involves a complex interplay be-

tween multiple joints, and the movement between different
joints is highly coordinated. Stacking multiple graph convo-
lution layers can construct a latent space that defines what a
natural hand pose would be, thus limiting the possible vari-
ation of output that a prediction or denoising network can
produce. This makes the prediction or denoising task much
easier than predicting individual joints without considering
the context of neighboring joints. If the network is capable
of leveraging the relevant context with the corrupted pose,
it is of great benefit to recover the missing information and
remove the noise. The main idea of the proposed method
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is to integrate trustworthy contributions of neighboring
joints. This is achieved through the attention mechanism
that learns dynamically which neighbors are clean or noisy.

In this work, we employ a self-attention mechanism to
learn dynamic weights for joints, rather than using a learn-
able mask to determine the contribution of joints without
defined links. This is because a learnable topology only
learns a static weight for each hand pose, which ignores the
differences in hand noise that can occur during motion. With
self-attention, the network can dynamically learn which
neighboring joints are clean or noisy and adjust the con-
tribution of each joint accordingly, leading to more accurate
denoising and prediction. Thus, we can obtain: :

Z(l) = σ

(
K∑

k=1

(
Ãk +B

(l)
k +C

(l)
k

)
H(l)W

(l)
k

)
, (7)

where B
(l)
k ∈ RN×N is a learnable matrix, ensuring com-

pensation for noisy joints from potentially undefined nodes,
and C

(l)
k ∈ RN×N is an adaptive matrix, responsible for

modulating the connection strength between neighboring
nodes. The values in C

(l)
k are determined by leveraging the

scaled dot-product attention mechanism as detailed in [49],
which can be represented as:

C
(l)
k = softmax

((
Q(l)K(l)⊤

)
/
√
d
)
, (8)

where Q(l),K(l) ∈ RCin×d denote the query and the key em-
beddings respectively, and softmax(·) indicates the softmax
activation function. The scale factor 1/

√
d is used to prevent

the dot products from growing too large in magnitude,
which can lead to numerical instability during training. Both
the query Q(l) = H(l)W

(l)
query and the key K(l) = H(l)W

(l)
key

are the embedding of the latent representation H(l), where
W

(l)
query,W

(l)
key ∈ RCin×d are the corresponding embedding

weights. The matrix C
(l)
k learns a unique connected topol-

ogy for each hand pose H(l) and measures the information
transfer relationship between any two joints.

Temporal Convolution. We use temporal convolution to
capture the temporal pattern of hand motion. To accommo-
date variable-length inputs due to different sampling rates
or system constraints in real-world applications, we pad the
sequence start, ensuring consistent output lengths without
altering the network structure. We can capture both short-
term and long-term motion trends by stacking multiple
layers:

H(l+1) = σ
(
Conv1D(Z(l))

)
, (9)

where Conv1D(·) denotes the temporal convolution, which
is essentially a 1D convolution.

3.4 Loss Function
During the training phase, the network simultaneously
recovers the denoised output X̂ and forecasts the future
output Ŷ from the corrupted input X̃. The entire network
is trained end-to-end using a combined loss, which consists
of a reconstruction loss and a prediction loss.

The reconstruction loss measures the difference between
the denoised output and the clean ground truth, while

(a) (b) (c)

(d) (e) (f)

Fig. 7. Example plots of the data synthesis process for a hand motion:
(a) Ms, (b) Mo, (c) S, (d) X, (e) X′, and (f) X̃.

the prediction loss measures the difference between the
predicted future output and the future ground truth. The
combined loss is defined as the weighted sum of the recon-
struction loss and the prediction loss, which is:

L = λ1∥X− X̂∥22 + λ2∥Y − Ŷ∥22, (10)

where λ1 and λ2 are balance factors, balancing the scale of
each loss term, distinguishing the importance of two tasks,
and ensuring that the two branches converge synchronously
as much as possible to stabilize the training process.

This work introduces a two-step training strategy to
better optimize the performance of our network. In the first
step, we focus solely on denoising to generate a high-quality
denoised output X̂, with the prediction branch disabled.
The second step trains the entire two-branch network end-
to-end. This approach allows the network to recover the
denoised output X̂ and predict the future output Ŷ from the
corrupted input X̃. By first ensuring the denoising branch
produces accurate results, the two-step training strategy
enhances the overall performance of the prediction branch.

4 EXPERIMENTS

A description of the experimental setup, including datasets,
metrics, and implementation details, is presented first, fol-
lowed by an analysis of the results.

4.1 Datasets
We have contributed to the field of hand motion denoising
and prediction by introducing two new datasets. These
datasets were constructed by applying our proposed data
synthesis algorithm to existing benchmark datasets. In the
following sections, we will describe the proposed data
synthesis algorithm and provide an overview of the two
synthesized datasets.

Hand Motion Data Synthesis. We use Algorithm 1 to
generate synthetic data. The proposed algorithm accepts
as input the original hand motion data in the form of
a tensor, along with three hyper-parameters: σo, σs, and
β. The core functionality of the algorithm involves a se-
ries of steps, beginning with data normalization, followed
by the generation of shifting and occlusion probabilities.
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These probabilities are then leveraged to apply Bernoulli
distributions for mask generation, with the resultant masks
utilized to shift and occlude the original data. The final
stage involves the optimization of the corrupted data, with
a focus on meeting certain structural constraints. Ultimately,
the output of the algorithm is the corrupted hand joint data,
presented in tensor format.

Algorithm 1: Motion data corruption algorithm
Input: Hand motion data X ∈ RT×N×3, hyper-parameters

σo ∈ R, σs ∈ R and β ∈ R.
Output: Corrupted hand joint data X̃ ∈ RT×N×3.

1 XT×N×3
n ← Normalize(X̃) ; // Data normalization

2 αT
s ← N (0, σ2

s ) ; // Sample shifting probability
3 MT×N

s ← Bernoulli(min (|αs|, 2σs)) ; // Shifting mask
4 ST×N×3 ← Shift(−β, β) ; // Shifting distribution
5 XT×N×3

s ← Xn + S⊙Ms ; // Data shifting
6 αT

o ← N (0, σ2
o) ; // Sample occlusion probability

7 MT×N
o ← Bernoulli(min (|αo|, 2σo)) ; // Occlusion mask

8 X′T×N×3 ← Xs ⊙ (1−Mo) ; // Data occlusion
9 X̃T×N×3 ← Optimize(X‘) ; // Structural constraint

To visualize the data synthesis process, we provide ex-
ample plots of a hand motion in Fig. 7. Specifically, Figs. 7(a)
to 7(c) depict the heatmaps of matrices Ms, Mo, and S,
respectively. Additionally, Figs. 7(d) to 7(f) illustrate frames
of the original motion X, inter-corrupted motion X′, and
the corrupted motion X̃, with the full motion available in
our supplementary video. Initially, the hand motion data
X (shown in Fig. 7(d)) is normalized to have a uniform
length across all motions using Normalize(·). To simulate
joint deviations, we add shifting noise S ∈ RT×N×3 (shown
in Fig. 7(c)) following a uniform distribution to the clean
data. A binomial distribution is used to sample the shifting
mask Ms ∈ RT×N (shown in Fig. 7(b)) to control the distri-
bution of shifting noise in data space. To simulate occlusion
scenarios, we generate an occlusion mask Mo ∈ RT×N

(shown in Fig. 7(a)) that sets certain hand joints to zero.
Thus, the noisy data X′ (shown in Fig. 7(e)) can be obtained.

In contrast to prior work [17], we impose specific struc-
tural constraints on the corrupted operation, as illustrated
in Fig. 8. We assume that the root joint and palm joints
are relatively stable, and thus we start to optimize from a
position two hops away from the root node. As shown in
Fig. 8(a), adding noise to each joint separately can cause the
third and fourth joints (x′

3 and x′
4) to deviate from their orig-

inal position (x3 and x4) and disregard the hinge structure
of the hand, resulting in poor generalization. Therefore, we
constrain the distance between the child node and the parent
node to generate more realistic noisy motions, as shown in
Fig. 8(b). We optimize the corrupted data by starting from
a node close to the root and moving toward nodes farther
away. The child nodes inherit the shift correction from their
parent node and then correct themselves, which avoids
generating extremely unreasonable noise and facilitates the
learning of complex spatial-temporal patterns by the net-
work. In this way, this optimization process leads to better
generalization. Finally, we synthesize the corrupted data
X̃ ∈ RT×N×3 with respect to its ground truth X ∈ RT×N×3

(in Fig. 7(f)) using the optimization function Optimize(·).
The paired data is used to train our network.

Data synthesis algorithm

RootRoot

Noising Optimization(a)

Data synthesis algorithm

RootRoot

Noising Optimization (b)

Fig. 8. Illustrations of (a) noising and (b) optimization.

The NYU Dataset. The first dataset, NYU, is derived from
a hand pose estimation dataset [48]. We sample T frames at
⌈T/2⌉ frame intervals from each sequence, which are then
organized into clips and serve as the ground truth. Our data
synthesis algorithm is applied to corrupt the ground truth
and generate the corresponding input data. We set T = 36
frames for each clip, consistent with our previous work [59].
The resulting clips form the basis of our training and testing
datasets, which we further divide into separate sets with a
test rate of δ = 0.15. We obtained a total of 10,299 clips for
the training set and 1,818 clips for the testing set.

The SHREC Dataset. The second dataset, SHREC, is
constructed from a challenging hand gesture recognition
dataset [11]. This dataset contains 14 gestures, including five
types of fine gestures that involve hand shape changes and
coarse gestures that involve hand movement. We follow the
same pre-processing steps as for the NYU dataset, resulting
in a total of 6,482 clips for the training set and 1,144 clips for
the testing set. This dataset is different from NYU in that it
contains occlusions, dislocations, and high-frequency noise,
and has a relatively small amount of data, which provides
a more comprehensive evaluation of the effectiveness and
robustness of our proposed algorithm.

4.2 Metrics

Previous studies [3], [17] have employed pose or rotation er-
rors to assess the algorithm’s performance. However, these
metrics are inadequate to evaluate the algorithm’s ability to
preserve the structural constraint of the data. To address this
issue, we propose two additional metrics: the mean bone
length error and the mean symmetry error, in addition to
the mean pose error.

Mean Pose Error. It measures the hand pose difference
between the output X̂ and the ground truth X, which is:

Epos = MSE(X, X̂). (11)

Mean Bone Length Error. It measures the error between
the bone length of the output X̂ and that of the ground truth
X, which is:

Ebon = MSE(ϕ(X), ϕ(X̂)), (12)

where ϕ(·) calculates the bone length of any two physically
connected joints.

Mean Symmetry Error. It measures the symmetry error
of two symmetry-connected joints between the relative dis-
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tance of the output X̂ and that of the ground truth X, which
can be represented as:

Esys = MSE(ψ(X), ψ(X̂)), (13)

where ψ(·) calculates the relative distance of any two
symmetry-connected joints.

4.3 Implementation Details
In this work, we have implemented our method and the
state-of-the-art methods using the Tensorflow 2 framework.
All experiments have been conducted on a single GeForce
RTX 3090 GPU with CUDA 11.3.

During the data generation phase, the parameters σo, σs,
and β are used to regulate joint occlusions, swaps, and noise,
respectively, with values of 0.1, 0.1, and 50mm, respectively.
A training and testing batch size of 64 is employed to boost
the training and inference. To mitigate over-fitting during
model training, we employ a piecewise learning rate decay
strategy. We use the Adam optimizer with an initial learning
rate of 0.1. This learning rate is then reduced by a factor
of 0.1 during both the 75th and 90th epochs. The training
process is capped at a maximum of 100 epochs.

4.4 Results and Analysis
Firstly, we compare our method with the state-of-the-art.
Then, we present the ablation study. Finally, a large amount
of quantitative and qualitative experiments are also shown
to verify the effectiveness of our method.

4.4.1 Comparison with the State-of-the-Art
To evaluate the performance of the proposed method, the
authors compared it with several state-of-the-art methods
on two large-scale datasets. The comparison includes joint-
space encoder-bidirectional-filter network (EBF) [36], joint-
space convolution neural network (CNN) [18], optical mo-
tion residual neural network (ResNet) [17], hand tremor
compensation module based on graph neural network
(CAM-GNN) [23] and our previous work [59], respectively.
To ensure a fair comparison, all methods were implemented
with the same number of layers and roughly the same mem-
ory allowance, with the number of hidden units adjusted
accordingly. The performance of each method is evaluated
using various metrics.

TABLE 1
Comparisons on the NYU dataset with state-of-the-arts (mm2):

Multi-STGAE+ represents a version of the model with fewer channels
compared to Multi-STGAE.

Method Epos Ebon Esym

EBF [36] 70.7740 13.5822 69.2183
CNN [18] 170.3657 23.5246 390.9772
ResNet [17] 59.8223 6.5408 89.1416
CAM-GNN [23] 17.6803 3.5570 32.7914
STGAE 2.1741 0.5640 3.8091
Multi-STGAE+ 0.9565 0.1291 1.1442
Multi-STGAE 0.8043 0.0904 0.8736

Quantitative Results. Tables 1 and 2 report the compar-
ison results on the NYU dataset and the SHREC dataset,

(a)

(b)

(c)

(d)

(e)

Fig. 9. Qualitative comparisons on the NYU dataset with state-of-the-
arts: (a) input, (b) ResNet [17], (c) CAM-GNN [23], (d) STGAE [59], and
(e) Multi-STGAE (Ours).

respectively. Compared with these state-of-the-art methods,
our model performs best under all three metrics on both
datasets. Some methods [17], [18], [36] are designed for
denoising human body motion data, and migrating these
methods directly to hand motion data performs poorly. This
is because the hand has a more complex hinge structure than
the human body and the relative magnitude of the noise is
greater, making it more susceptible to noise. The proposed
method is superior to the method [23] which is designed
for hand motion denoising. The reason behind this is that
the proposed method can capture both spatial and temporal
patterns simultaneously, which helps it to achieve better
results. Additionally, our method considers the structural
constraints of the hand motion, resulting in significantly
better performance in terms of bone length and symmetry
errors. By introducing the auxiliary task, the denoising task
has been further enhanced. It can simultaneously predict
future hand dynamics, which is crucial in AR scenes with
real-time hand-object manipulation. To a certain extent,
performing motion prediction also alleviates the impact of
processing and transmission delays.

TABLE 2
Comparisons on the SHREC dataset with state-of-the-arts (mm2).

Method Epos Ebon Esym

EBF [36] 38.7842 74.2793 66.9073
CNN [18] 6.2059 7.8206 11.1006
ResNet [17] 24.0110 35.6497 44.3853
CAM-GNN [23] 12.7578 10.9209 24.6467
STGAE 7.1960 10.3245 12.1954
Multi-STGAE 1.9973 0.5989 1.5023

Qualitative Results. We visualize several frames of two
hand motions on the NYU dataset and the SHREC dataset.
Figs. 9 and 10 show the visualization plots of the corre-
sponding denoising results. Figs. 9(a) to 9(e) show results
of four methods: ResNet [17], CAM-GNN [23], STGAE [59],
and ours. In each subfigure, the ground truth is indicated
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(a)

(b)

(c)

(d)

(e)

Fig. 10. Qualitative comparisons on the SHREC dataset with state-of-
the-arts: (a) input, (b) ResNet [17], (c) CAM-GNN [23], (d) STGAE [59],
and (e) Multi-STGAE (Ours).

by light shading whereas the normal shading represents the
denoised output. For complete motion, we have provided a
video for readers in the supplementary material. We mark
the parts with large errors with red circles to make it easier
to visualize the visual difference. As can be seen from Fig. 9,
the input raw data in Fig. 9(a) contains severe noise, but
these methods have shown good performance. Neverthe-
less, our method is more effective in some areas of detail. For
example, CAM-GNN produces poor estimation results for
the tip of the index finger in the first frame due to the high
degree of freedom of the fingertip. Similarly, Fig. 10 shows
that other algorithms exhibit varying degrees of denoising
failure on the SHREC dataset. Remarkably, our proposed
algorithm demonstrates exceptional performance on this
challenging dataset, which contains severe occlusions, dislo-
cations, high-frequency noise, and limited data, as described
in Sect. 4.1. This finding highlights the robustness of our
algorithm in handling such severe drawbacks.

Computational Overhead. Fig. 11 shows the bubble plot
with respect to the model size and the computational over-
head of our model and baselines. The horizontal axis rep-
resents the number of training parameters, and the vertical
axis represents the amount of calculation. The smaller the
bubble, the smaller the error.

The result in Fig. 11 shows that our method not only
achieves the best performance but also requires a smaller
model size and lower computational complexity. Multi-
STGAE with 0.64M parameters and 392.55 GFLOPs outper-
forms STGAE with 0.20M parameters and 97.41 GFLOPs
while accumulating relatively low computational overhead,
as shown in Table 1. Moreover, by reducing the number
of channels, Multi-STGAE+ with 0.22M parameters and
126.25 GFLOPs can save a significant number of param-
eters and calculations with a little denoising performance
impact. Unlike the EBF method, our approach, with its
network designed to meet real-time requirements, can im-
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Fig. 11. The computation bubble plot on the NYU dataset.

mediately process input without the necessity to wait for
15 frames, leading to enhanced performance with mini-
mal computational overhead. Additionally, our model is
much more lightweight for practical use due to the effec-
tive parameter-sharing mechanism. Compared with CAM-
GNN, our method fuses spatial and temporal features with
fewer trainable parameters, which accelerates model con-
vergence and achieves better performance. It is worth noting
that our method satisfies real-time processing demands
during inference, achieving a frame rate of 25.7 fps for
both denoising and prediction tasks. For specific real-world
denoising applications where prediction is unnecessary, our
method can reach a higher frame rate of 32.0 fps.

4.4.2 Ablation Study
Through our ablation study, we investigate the effectiveness
of the key components in our proposed method. To ensure a
comprehensive evaluation, we conduct experiments on both
the NYU and SHREC datasets.

Effectiveness of Different Attention Mechanisms. We
first investigate the effectiveness of different attention mech-
anisms in our proposed method. These experiments are con-
ducted solely within our denoising framework. Specifically,
we compare the baseline model with two attention variants:
one that multiplies a mask and another that adds learnable
parts in Eq. (7). For additive attention, we separately explore
the effectiveness of different parts. Table 3 reports the cor-
responding results on both the NYU and SHREC datasets,
where D denotes the symbol of datasets.

TABLE 3
Results on the effectiveness of different attention mechanisms (mm2).

D Setting Epos Ebon Esym

N
Y

U

Base Ã 15.83 4.60 26.23
Mask Ã⊙M 13.70 ↓2.13 4.02 ↓0.58 22.70 ↓3.53

Add

B+C 13.69 ↓2.14 4.76 ↑0.16 23.81 ↓2.42

Ã+C 13.15 ↓2.68 4.31 ↓0.29 20.69 ↓5.54

Ã+B 14.43 ↓1.40 3.47 ↓1.13 30.03 ↑3.80

Ã+B+C 2.17 ↓13.66 0.56 ↓4.04 3.81 ↓22.42

SH
R

EC

Base Ã 18.96 39.98 44.82
Mask Ã⊙M 16.94 ↓2.02 25.57 ↓14.41 28.41 ↓16.41

Add

B+C 16.83 ↓2.13 30.13 ↓9.85 32.16 ↓12.66

Ã+C 17.44 ↓1.52 32.26 ↓7.72 35.55 ↓9.27

Ã+B 15.52 ↓3.44 21.94 ↓18.04 23.42 ↓21.40

Ã+B+C 7.20 ↓11.76 10.32 ↓29.66 12.20 ↓32.62

In Table 3, the results showcase the effectiveness of
attention mechanisms in our proposed method across both
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two datasets. For example, the baseline model without any
attention mechanism achieves a pose error of 15.83 on
the NYU dataset. In contrast, the two different kinds of
attention mechanisms outperform this baseline, indicating
that using attention mechanisms is beneficial for denoising.
Specifically, attention mechanisms help the GCN become
less dependent on the pre-defined graph structure, leading
to stronger generalization performance.

In terms of the two attention mechanisms, it can be seen
in Table 3 that the additive attention mechanism performs
better than the mask attention one. Learning neighbor im-
portance by multiplying masks (Ã⊙M) maintains the prior
graph topology Ã, whereas adding the learnable component
B and the adaptive component C ensures that the graph
structure can be fully and properly adjusted. This indicates
that a fixed topology lacks adaptability to dynamic systems,
potentially leading to challenges in handling noisy data
or evolving relationships. Among the different variants of
additive attention, (Ã+B+C) performs the best, indicating
the effectiveness of all the learnable components.

To further explore the effectiveness of different parts of
(Ã + B + C), we conduct ablation studies by separately
deleting each part, as shown in Table 3. Deleting the pre-
defined adjacent matrix Ã causes the graph to lose the topo-
logical prior, making it difficult for the network to converge
compared with (Ã + B + C). Both deleting B and C are
not conducive to dynamically learning which neighbors are
trustworthy. This can be primarily attributed to the adaptive
matrix B, which allows the network to modulate the de-
gree of denoising contribution. Concurrently, the learnable
matrix C endows the network with enhanced flexibility,
enabling it to discern potential dependencies without being
constrained by prior limitations. Based on the results of our
experiments, we conclude that both the prior topology and
the learned topology are essential for improving denoising
performance, which is a general conclusion that holds true
in other fields as well [43].

In comparing the results across different datasets from
Table 3, the pose error on the SHREC dataset is consistently
larger than on the NYU dataset. This discrepancy can be at-
tributed to the distinct joint representations in each dataset.
Specifically, the NYU dataset employs a 36-joint represen-
tation (in Fig. 9), whereas the SHREC dataset utilizes a 22-
joint configuration (in Fig. 10). For the same hand poses,
the model with a greater number of joints tends to produce
more refined and thus less erroneous results. Moreover, in
the NYU dataset, the bone length error is significantly lower
than the symmetry error, while in the SHREC dataset, these
errors are comparable. This is due to the NYU hand model’s
denser joint arrangement, which results in physically con-
nected joints being closer together compared to their sym-
metrical counterparts.

Effectiveness of Different Partition Strategies. Differ-
ent from other methods [3], [43], this work proposes a
simple yet effective partition strategy where the indirect
symmetric connections also serve as the edges of the spatial-
temporal graph. To examine the effectiveness of different
types of connections on the performance of the proposed
model, we conduct experiments on our denoising frame-
work by removing one type of connection at a time, i.e.,

TABLE 4
Results on the effectiveness of different partition strategies (mm2).

D Setting
Epos Ebon EsymA1 A2 A3

N
Y

U

✓ ✓ ✓ 2.17 0.56 3.81
✓ ✓ ✗ 9.12 ↑6.95 2.32 ↑1.76 16.98 ↑13.17

✓ ✗ ✓ 11.20 ↑9.03 2.60 ↑2.04 21.10 ↑17.29

✗ ✓ ✓ 14.05 ↑11.88 6.42 ↑5.86 26.10 ↑22.29

SH
R

EC

✓ ✓ ✓ 7.20 10.32 12.20
✓ ✓ ✗ 16.13 ↑8.93 29.83 ↑19.51 32.84 ↑20.64

✓ ✗ ✓ 15.32 ↑8.12 27.13 ↑16.81 30.35 ↑18.15

✗ ✓ ✓ 16.95 ↑9.75 31.27 ↑20.95 34.58 ↑22.38

self-connections A1, physic-connections A2, and symmetry-
connections A3. Table 4 presents the corresponding results
on both the NYU and SHREC datasets.

From Table 4, it is evident that removing any of these
connections greatly reduces the error of the proposed model
compared to the baseline that consists of all three connec-
tions. Among them, deleting the self-connection item A1 has
the greatest impact, indicating that the self-connection in the
graph is the most important. To some extent, self-connection
represents that the motion of each joint is continuous in
the temporal domain. Second, the influence of immediate
neighbors A2 is also very large. A solid structural constraint
is evident between physic-connected joints. The effect on
indirect connections A3 is minimal, indicating that sym-
metrical neighbors are the least important compared with
self-connections and direct connections. Despite this, remov-
ing symmetry-connected relationships results in significant
performance degradation, indicating the effectiveness of the
proposed partition strategy. It is important to note that these
conclusions might be applied to other fields, such as action
recognition, while the previous work has not been explored.

Effectiveness of the Multi-task Framework. To avoid
the over-smoothing problem caused by the denoising pro-
cess, we introduce a prediction task to improve denoising
performance. To verify the relevance of the two tasks, we
separately analyze the results of motion denoising and
prediction when one of them is removed from our multi-
task framework. Also, we evaluate the effectiveness of the
key components. Table 5 shows the corresponding results on
both the NYU dataset and SHREC datasets, where ED, EP,
andEavg denote the evaluation metric of the motion denois-
ing, the motion prediction, and the multi-task framework,
respectively. For the multi-task framework, we calculate the
individual errors (both ED and EP) for each frame and then
average these errors across all frames to obtain Eavg. This
approach provides a more comprehensive understanding of
the error distribution over the entire sequence, rather than
just a direct sum of two error metrics.

In our single-task configurations, for the denoising net-
work (without prediction), the model is simplified by omit-
ting the prediction branch, concentrating solely on denois-
ing. Conversely, the prediction network (without denoising)
aligns with the multi-task setting by predicting the relative
offsets, thus allowing for a direct comparison to estimate the
effect of denoising on prediction performance. It can be seen
from Table 5 that considering these two branches jointly
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TABLE 5
Results on the effectiveness of the multi-task framework (mm2).

D Setting ED
pos ED

bon ED
sym EP

pos EP
bon EP

sym Eavg
pos Eavg

bon Eavg
sym

N
Y

U

Multi-STGAE 0.80 0.11 1.10 26.13 0.90 17.27 3.89 0.19 2.87
w/o gate 1.20 ↑0.40 0.18 ↑0.07 1.60 ↑0.50 35.92 ↑9.79 2.55 ↑1.65 18.35 ↑1.08 4.44 ↑0.55 0.36 ↑0.17 3.56 ↑0.69

w/o denoising - - - 76.67 ↑50.54 3.96 ↑3.06 21.12 ↑3.85 - - -
w/o prediction 1.47 ↑0.67 0.22 ↑0.11 1.83 ↑0.73 - - - - - -

Multi-STGAE⋆ 0.92 ↑0.12 0.11 ↑0.00 1.05 ↓0.05 27.53 ↑1.40 0.95 ↑0.05 17.98 ↑0.71 4.16 ↑0.27 0.21 ↑0.02 3.12 ↑0.25

SH
R

EC

Multi-STGAE 2.00 0.60 1.50 80.01 10.49 51.92 11.52 1.81 7.65
w/o gate 2.54 ↑0.54 0.82 ↑0.22 1.90 ↑0.40 92.48 ↑12.47 13.21 ↑2.72 53.23 ↑1.31 13.51 ↑1.99 2.33 ↑0.52 9.04 ↑1.39

w/o denoising - - - 102.47 ↑22.46 21.08 ↑10.59 75.61 ↑23.69 - - -
w/o prediction 3.42 ↑1.42 0.64 ↑0.04 1.52 ↑0.02 - - - - - -

Multi-STGAE⋆ 2.23 ↑0.23 0.71 ↑0.11 1.74 ↑0.24 93.99 ↑13.98 11.93 ↑1.44 57.60 ↑5.68 13.42 ↑1.90 2.98 ↑1.17 8.55 ↑0.90
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Fig. 12. The amplitude MSE plots of spectrum analysis across the entire
test set for (a) the NYU dataset and (b) the SHREC dataset.

achieves better results than the single one. To determine
whether incorporating a prediction task can mitigate the
tendencies towards over-smoothing, we employ the Fourier
transformation [60] to transform both the denoising output
and the ground truth of the entire test set into the frequency
domain. Subsequently, we compute the MSE between their
frequency spectrums. An analysis comparing the error in
a multi-task framework to that in a single-task framework
(w/o prediction) is presented in Fig. 12. The results suggest
that the introduction of a prediction task not only enhances
performance in the high-frequency domain (e.g., about 70
to 75 Hz in Fig. 12(a)) but also manifests promising results
in the low-frequency domain (e.g., about 5 to 10 Hz in
Fig. 12(a)). This underscores the potential of incorporating
a prediction task to preserve intricate details and effectively
alleviate over-smoothing tendencies. The results in Table 5
also indicate that motion denoising can significantly en-
hance the prediction process. Therefore, when forecasting
future motion, it is important to denoise historical dynamic
information to capture the information accurately.

Previous works [29], [46] have shown that the multi-task
framework may suffer from negative transfer due to task
conflicts as parameters are shared between tasks. To address
this issue, we utilize the gate mechanism. Different from
the PLE model [46], we propose a more efficient method
that only requires two gates. On the one hand, as can be
seen in Table 5, eliminating the gate mechanism reduces
the performance of the multi-task framework. This demon-
strates that the gate mechanism can mitigate conflicting
information between tasks to a certain extent and improve
the performance of a single task to a certain extent. On
the other hand, we also implement the PLE model (Multi-
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Fig. 13. Plots of the pose error curves with respect to (a) the denoising
and (b) the prediction loss weights.

STGAE⋆). It can be seen from the last row of Table 5 that
our model has achieved better performance. Furthermore,
our model encoder requires 2.28M parameters, whereas the
PLE model requires 8.19M parameters. The efficiency and
effectiveness of our model can therefore be verified.

Furthermore, we further explore the effectiveness of
different loss weights between the two tasks in terms of
influence. Specifically, we adjust the loss weights of motion
denoising and motion prediction, respectively, whereas the
other weight is set to 1. The corresponding results on the
NYU dataset are shown in Fig. 13. Based on the error
magnitudes, it can be concluded that the training difficulty
of the two tasks is different. This is in accordance with our
common sense that prediction tasks are more difficult than
denoising tasks. Consequently, it is evident from Fig. 13
that as the prediction weight increases or the denoising
weight decreases, the total error will increase. For example,
when the emphasis on training shifts toward denoising due
to a reduced prediction weight in Fig. 13(b), it enhances
the prediction performance. This further confirms that the
denoising task may serve as an auxiliary facilitator for the
prediction process. Furthermore, a notable observation in
our experiment is that when the denoising weight is set
at a magnitude 20 times that of the prediction, the model
delivers its optimal performance. Interestingly, this ratio
corresponds closely to the observed difference in error mag-
nitude. Therefore, we set this ratio for other experiments.

Others. We also explore the effect of different parameter
settings on the performance of our method. There are two
factors involved, including the strength of the noise and the
length of the prediction. Fig. 14 shows the corresponding
results on the NYU dataset.

As shown in Fig. 14(a), the overall performance of the
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Fig. 14. Plots of the pose error curves with respect to (a) the window
size and (b) the noise magnitude.
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Fig. 15. Plots of a motion trajectory and the corresponding pose error
curve using our method: (a), (b), and (c) are the motion trajectory of the
index fingertip on the x-axis, y-axis, and z-axis (mm), respectively. (d) is
the pose error (mm2) curve of the complete motion between the noisy
input and the denoised output.

method decreases as the window size length increases. It
should be noted that the performance of denoising is not
very variable, This is primarily due to the difference in error
levels between the two tasks. As can be seen from Fig. 14(b),
the overall performance of the model tends to be stable with
increasing noise amplitude, which supports the robustness.

4.4.3 Visualization

For a more comprehensive understanding of our method’s
performance, we visualize more quantitative and qualitative
results using the NYU dataset.

Motion Trajectory. Motion trajectories provide an intu-
itive representation of the performance in denoising and
predicting. We depict the trajectory of the fingertip joint of
the index finger to provide a better understanding of the
trajectory. Since the fingertip joint has a greater degree of
freedom than the root joint, it is more difficult to predict
and recover its posture. Fig. 15 shows the results.

Figs. 15(a) to 15(c) show its trajectory of one hand with
respect to the x-axis, y-axis, and z-axis. After the corruption,
it is very evident that the input data is vibrating. The output
trajectory after denoising by our model is very close to the
ground truth, showing the effectiveness of the proposed
method. In Figs. 15(a) and 15(b), the predicted trajectory

(a)

(b)

(c)

Fig. 16. Plots of prediction results on the NYU dataset: (a) ground truth,
(b) the predicted result, (c) the predicted result without denoising.

circled in black differs significantly from the actual trajec-
tory, with the difference increasing with the length of the
prediction. On the one hand, it is evident that the prediction
task is more challenging than the denoising task. On the
other hand, it is difficult to predict long sequences. We
also visualize the corresponding predicted results in Fig. 16.
Visually, there is almost no difference between the predicted
result and the ground truth, which supports the effective-
ness of our prediction method. In addition, Fig. 15(d) shows
the pose error curve of the complete motion. Compared with
the input, the pose error curve of the output is almost flat
and close to zero in general, indicating the effectiveness of
our proposed method in motion denoising and prediction.

Learned Adjacent Matrix. Since human motion is ex-
tremely complex and diverse, it is difficult to model spatial-
temporal relationships. This work shows GCNs are instru-
mental in solving the motion denoising and prediction
problem to some extent. The learned graph is also shown
to demonstrate its adaptability in a more intuitive manner,
which is shown in Fig. 17.

In Figure Fig. 17, we display a learned adjacent matrix
heatmap and its corresponding normalized adjacent matrix,
where the intensity of each element in the matrix is repre-
sented by a colorful scale, indicating the strength of the con-
nection. Fig. 17(a) shows the original normalized adjacent
matrix heatmap, where self-connections, physics-connected
connections, and symmetry-connected connections are con-
sidered. Fig. 17(b) displays an example of its corresponding
learned adjacency matrix generated by our proposed model.
Note that both the original normalized adjacent matrix and
the learned adjacency matrix have 3 channels, and in Fig. 17,
the effect of all channels is overlaid. As can be seen in Fig. 17,
the learned structure of the graph is more adaptive and not
restricted by physical or physiological constraints, allowing
GNNs to fully leverage their advantages.

5 CONCLUSION AND DISCUSSIONS

In conclusion, our work presents a multi-task framework
called Multi-STGAE that addresses the challenge of raw
hand motion data with errors in HCI applications. We
achieve this by explicitly modeling the structural priors of
hands and the temporal coherence of motion through the
spatial-temporal graph block. Our proposed novel hand
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Fig. 17. Heatmaps of the original (a) and learned (b) adjacent matrices.

skeleton partition strategy enhances the information com-
pensation from clean joints to noisy joints, and we introduce
a loss function to meet the bone length constraint. The
motion prediction task is incorporated to maintain temporal
dynamics, and the gate mechanism is designed to avoid neg-
ative transfer between different tasks. We show that motion
denoising and motion prediction are related tasks and that
a multi-tasking framework can outperform any single-task
framework. Additionally, our method can alleviate the delay
problem, thereby improving user experience in interactive
applications. Experimental results demonstrate that Multi-
STGAE outperforms state-of-the-art methods, confirming
the efficacy of our approach.

The main focus of our research is on the use of motion
data for pose estimation, although our work has poten-
tial applications in denoising data acquired through other
methods, such as motion capture. Additionally, our Multi-
STGAE model can be extended to the processing of human
motion data. However, despite the promising results of our
work, there are limitations that require further exploration.
(1) Our pre-training process involves synthetic motion data,
which may not generalize well to real-world scenarios due
to domain gap issues. To address this limitation, collect-
ing a small amount of real motion data and incorporat-
ing unsupervised learning techniques could help overcome
domain shifts and improve generalization performance in
real-world applications. (2) Currently, our system adeptly
handles sequences at a particular frame rate. However, it
remains paramount to evaluate its efficacy across diverse
temporal granularities. Conducting a comprehensive exam-
ination could provide insights into the balance between
computational efficiency, motion detail capture, and noise
sensitivity. (3) While our model mainly leverages input su-
pervision, the integration of a discriminator loss, similar to
the principles of Generative Adversarial Networks (GANs)
[4], to distinguish the noise level in a joint could provide

further refinement. This strategy could guarantee that the
produced motions are not just precise but also maintain
a semblance of realism. These avenues of research present
exciting possibilities for future work in the field.
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