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Abstract
3D car models are heavily used in computer games, visual effects, and even automotive designs. As a result, producing such
models with minimal labour costs is increasingly more important. To tackle the challenge, we propose a novel system to
reconstruct a 3D car using a single sketch image. The system learns from a synthetic database of 3D car models and their
corresponding 2D contour sketches and segmentation masks, allowing effective training with minimal data collection cost.
The core of the system is a machine learning pipeline that combines the use of a generative adversarial network (GAN)
and lazy learning. GAN, being a deep learning method, is capable of modelling complicated data distributions, enabling the
effective modelling of a large variety of cars. Its major weakness is that as a global method, modelling the fine details in the
local region is challenging. Lazy learning works well to preserve local features by generating a local subspace with relevant
data samples. We demonstrate that the combined use of GAN and lazy learning produces is able to produce high-quality
results, in which different types of cars with complicated local features can be generated effectively with a single sketch. Our
method outperforms existing ones using other machine learning structures such as the variational autoencoder.
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1 Introduction

3D car models are heavily used across multiple fields such
as entertainment [14], visual effects [42] and automotive
designs [50]. The process to generate models that resemble
similar features from the real-world ones is usually time-
consuming and labour-intensive. Automatic approaches that
reconstruct 3D models from a single image input can be
served as effective solutions.

Despite significant research [10,50] in related areas, high-
quality reconstruction of complicated 3D carmodels remains
challenging due to several reasons. First, in animation, game,
and automotive manufacturing industries, the design process
usually involves concept arts of the car, which are typically
represented as sketches on predefined viewpoints. Therefore,
previous methods with photo inputs [25] are not practical in
designing new shapes or modifying existing designs. Sec-
ond, for learning-based methods, different types of cars such
as SUVs and trucks consist of significantly diverse features,
making the process of learning complicated data distribu-
tions difficult for a single neural network [36]. Third, cars
modelling with fine details is a distinct problem as cars have
common features such as where to place the wheels, but also
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Fig. 1 Examples of 3D car shapes generated by our system with side-view sketches. Top-left white lines are input contour sketches, while blue
point clouds are corresponding outputs

distinctive parts such as the shape of rear wings and roofs
[10]. Past research [50] shows that it is challenging to learn
a diverse car subspace that represents both common and dis-
tinctive car features well.

In this paper, we propose a novel system to reconstruct a
3D car using a single sketch image, enabling an effective car
shape creation process. To provide a good user interface for
creating car shape, we use contour sketches [31] that contain
car boundaries and salient inner edges as the input. Such
drawing greatly helps the car designing process as it allows
users to directly use their understanding of scene geometry.
We propose a data generating system that produces synthetic
quadruplets of contour sketches, depth, segmentation masks
and shape annotations from 3D car models obtained from
ShapeNet [4] for facilitating an effective training process
and a feature-preserving car mesh augmentation pipeline to
maximize the data variation.

To tackle the challenge of modelling 3D car shapes, we
propose a novel two-stage machine learning framework. In
the first stage, we propose a GAN-based network that learns
from contour sketches and 3D shapes to ensure a wide vari-
ety of car shapes. As the GAN [15] has shown success in
modelling 3D shapes [43] with its strong ability to model
complicated data distributions, we adapt GAN to generate
global shapes of 3D car models. Since it is computation-
ally inefficient to directly learn 3D shape representation from
mesh, we propose to learn an intermediate representation of
multiple depth images instead and reconstruct the 3D car
mesh as a post-processing step. As global deep learning-
based methods are limited in representing local details such
as rear wings [16,50], in the second stage, we introduce a lazy
learning method to learn a local subspace from the relevant
samples in the database. Compared to traditional approaches,
lazy learning postpones the generalization of the database to
run-time [3], which reduces the scale of learning by only
considering the most relevant data. This facilitates the rep-
resentation of local features that may be insignificant on a
global scale. We further apply principal component analy-
sis (PCA) to improve the search space of point clouds, from
which we search for the k nearest neighbours. We finally
perform a low-cost optimization process on the subspace to
generate a 3D car shape with fine details.

Experimental results show consistent outputs of 3D car
models generated from contour sketches with diverse shapes
and topologies (Fig. 1). In addition to well-resembled global
shapes of contour sketches, fine details and local features
such as rear bumpers are also effectively preserved in the gen-
erated models (Fig. 8). When compared to existing methods,
ours outperforms existing ones using other machine learning
structures such as the variational autoencoder (VAE) [37].

The major contributions of this paper are summarized as
follows:

• We propose a system to synthesize training data to con-
struct a large database of 56,224 samples with contour
sketches, depth, masks and 3D models. With realistic
sketch-like features, the contour sketch facilitates real-
world designing and editing applications.

• We propose a generative adversarial network to learn
the correlation between a 2D contour sketch and the
corresponding multi-view depth images that generate a
3D shape. Our GAN-based method outperforms exist-
ing learning-based approaches such as VAE with more
diverse car topologies and shapes.

• We propose a lazy learning algorithm to learn a local
subspace to reconstruct the fine detail features of the car.
Such a subspace bases only on the relevant car shapes
in the database and therefore effectively retains detailed
features in the samples [4].

The preliminary results of this work have been presented
in [37]. In this work, we have made the following technical
improvements. First, we represent a new database using con-
tour sketches for a better sketch-like drawing style,while [37]
uses a naive Laplacian filter to generate artificial samples.
Second, we propose GAN that can more robustly learn the
3D representation of different car types due to its strong capa-
bility to model complicated data distributions, as opposed to
[37] that usedVAEwith limited capacity onvaried car topolo-
gies. Third, we evaluate the proposed system with a set of
new experiments. We further compare our work with [37] to
demonstrate the improvements.

The rest of the paper is organized as follows: we review
previous work in Sect. 2. We explain the construction of our
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car database with contour sketches in Sect. 3. We present our
generative adversarial network for generating 3D car shapes
from 2D sketches in Sect. 4. We present our lazy learning for
constructing fine details for the car in Sect. 5. We show the
results of our system in Sect. 6. We conclude the paper and
discuss possible future directions in Sect. 7.

2 Related work

In this section, we first review previous sketch-based appli-
cations, followed by related work in the areas of sketch-style
image rendering, data representations for 3D shapes, and
finally machine learning for 3D shape reconstruction.

2.1 Sketches for 3D reconstruction

Sketches are powerful representations to capture users’
design for computer graphics applications. In particular, we
are interested in the problem in using sketches as a cue to
reconstruct 3D shapes. Earlier work utilizes sketches with a
predefined control interface to capture complicated 3D shape
designs [23]. Such a method is further extended to improve
the smoothness of the generated 3D shape [22], as well as
building the internal structure of the shapes [39]. The control
scheme was further enhanced to incorporate extra informa-
tion that represents shape symmetry and angles [13]. Amajor
problem for these methods is that the control scheme has to
be manually designed, and users have to learn such schemes
before using the system.

As an improvement, more general sketch-to-3D methods
are proposed by using the input sketches to represent geomet-
ric features of the 3D shapes. For example, it is possible to use
fit 3D primitive shapes into the input curves [47], to repre-
sent 3D inflating surfaces [26], or even to estimate the normal
map of the surface of a shape [44]. That said, these methods
aim at using artificial intelligence to infer the sketch informa-
tion provided by the users. With advanced machine learning
such as deep learning becoming more and more available,
we prefer to learn such a kind of logics automatically.

To create sketch images effectively for machine learn-
ing approaches, sketch-style rendering techniques are useful.
These techniques use 2D lines to represent 3D shapes. Dif-
ferent visual cues such as image boundaries and edges are
usually inferred froma single input imagewith edgedetectors
such as [2]. However, these methods capture high-frequency
signals without understanding the image. Boundary detec-
tors, otherwise, understand the scene and yield semantic
segmentation of different objects [34]. However, object
boundaries that only contain outer edges poorly resemble
realistic drawing features. Recently, contour sketches [31]
are proposed to provide more sketch-like features while
maintaining the ability to convey geometric information,

salient edges and occlusion events. Contrary to professional
computer-aided design software that requires professional
training and has an engineering focus, sketch-based inter-
faces [38] aremore designer-friendly. To accommodate users
with diverse drawing skills and artistic styles, we adapt con-
tour sketches as the input of our approach.

2.2 Machine learning for 3D shape reconstruction

3D shapes can be represented in different formats, and such
representations affect the performance of machine learn-
ing approaches heavily. In general, there are three types
of representation. The 3D point cloud has been used heav-
ily for modelling 3D shapes due to its simplicity, enabling
applications such as shape reconstruction [11] and shape clas-
sification [41]. The disadvantage of the representation is that
it does not represent volumetric information. As a solution,
voxels are used as they can model the volumetric occupancy
of a complex 3D shape, allowing more accurate shape recon-
struction [7]. However, although methods are proposed to
relax the computation requirements using octrees [49], 3D
operations are still computationally expensive. Depth images
that represent different views of a 3D shape using 2Ddistance
images can resolve this problem. As the surface information
of a shape can be represented using multiple 2D views, 2D
operations can be used to reconstruct 3D shapes [29], thereby
significantly reduces the computational requirements. The
combined use of depth images and normal images can fur-
ther enhance the representation power and give details to the
surfaces during a reconstruction process [24]. In this project,
we utilize depth images as an intermediate output, such that
we can relieve our system fromusing computationally expen-
sive and difficult to optimize 3D operations. Multiple views
of depth images are then combined to form a 3D shape using
an analytical solution.

Traditional methods use multiple views to 3D reconstruct
a scene. Reconstructing shapes from a single image is a chal-
lenging task but would benefit a wide range of real-world
applications. With recent advances in deep learning, data-
driven methods have gained increasing attention. Han et al.
[17] propose a convolutional neural network (CNN)-based
system to generate 3D faces from input sketches. Nishida
et al. [36] adapt a CNN to generate building models by
adding surface curve information as a style of sketching.
In the preliminary work [37], We also utilize deep learning
for constructing the sketch-based interface by adapting the
Variational Autoencoder (VAE) [27] for correlating the 2D
sketch and the output represented as depth and mask images.
Although such a generative model has shown promising
results in the translation of image style, its capability in mod-
elling complicated data distribution is limited.

As a global model, GAN was introduced as a generative
model to synthesize new instances from multiple predefined
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classes [15].Other than computer graphic tasks such as image
inpainting [40] and texture transfer [30], GAN has shown
success in recovering the geometric structure from a sin-
gle given image [25,43]. When reconstructing the 3D shapes
from image inputs, the adversarial loss of GAN is capable of
working as a fidelity regularizer and ensures that the gener-
ated samples share a close shape probability distributionwith
the training data. Considering the ability to learn complicated
data distribution and the flexibility to support different infer-
ences, we adapt GAN in our method to infer and generate
global features of car models.

To further complement the expressiveness and represent
fine details of the shapes that are specific to a small cluster
of samples [50]. In the area of car reconstruction, different
categories of cars have different specific details such as side
mirrors and rear wings. Past research has shown that local
models utilizing lazy learning can help to preserve fine details
in different problems.Chai et al. [3] generate a human surface
from a sparse input with a large motion database. Shum et al.
[48] reconstruct noisy 3D human motion captured by Kinect
using lazy learning. The main idea is to extract relevant data
based on a run-time query and construct a local model during
run-time. In this work, we adapt lazy learning to generate the
fine details of a car based on the output generated by a deep
learning network.

3 Database creation

In this section, we present a robust and efficient process to
construct a 3D car mesh database with contour sketches
that highly resemble human sketches. A synthesis-based
approach reduces the cost to acquire expensive paired 2D and
3D training samples,while the generated database can be eas-
ily extendedwith a larger size and scale.We generate contour
sketches with a conditional GAN and create a point cloud
representation from the 3D meshes. With contour sketch
annotations, it is made easier for users with drawing skills
to make use of the approach. With novel feature-preserving
data augmentation techniques, we create a large variety of
logically correct car meshes.

The database contains two sets of representations: (1) 2D
contour sketches, depth and mask images for shape recon-
struction, and (2) registered 3D point clouds for details
synthesis.

3.1 Feature-preserving car mesh augmentation

We follow the method in [37] to augment the 3D car meshes
such that we can generate a larger database with more car
variations. The key advantage of the method is that it can
retain the local features of the car during the augmentation
process. For example, while scaling a car, unlike previous

Fig. 2 Results generatedwith different k. From top to bottom: sketches,
point clouds with k = 1, k = 3, k = 5 and k = 7

methods [43] that would distort the proportion of the car
wheels, ours can maintain the circular wheel shape.

Here, we summarize the augmentation method. Readers
are referred to [37] for more details.

Our car meshes came from ShapeNet [4], as it offers dif-
ferent models of car with different variations. That said, the
database is not big enough to effectively train the deep learn-
ing system. Therefore, we augment the car meshes following
[28], which allows us to change the shape of the car while
retaining local features at the same time. The core of the
method is to voxelize the mesh and to interpolate the ver-
tices based on the augmented (i.e. scaled) voxel grid. In our
system, the resolution of the grid is set as 5 × 10 × 15. We
then scale the grid with ±20%, ±15%, ±10% and ±5% for
the height and length directions. With an input of 7,028 cars
meshes,with our augmentationmethod,we can create 56,224
meshes. Examples are shown in Fig. 2.

3.2 The 2D contour sketches depth andmasks
representation

With the 3D meshes created, we produce the corresponding
2D contour sketches and depth representations for training
our deep learning system on car shape reconstruction. On
the one hand, traditional edge detector such as a Canny edge
detector [2] only capture high-frequency signals of an input
image, and such samples with excessive details greatly differ
fromhumandrawings.On the other hand, segmentationmod-
els are usually trained with only the outer boundaries with
no salient inner edges, resulting in oversimplified predictions
that poorly represent geometric information of the input [31].
Tomakeourmethodpracticalwhen applied to real-world sce-
narios such as automotive designing processes,we synthesize
contour sketches, which contain both the outer boundaries
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and salient inner edges to represent occlusion events hap-
pen in the original photorealistic counterpart, generated 3D
meshes.

To achieve high-quality contour sketch inferences from
3D car meshes, we adapt conditional GAN [35]. Compared
to a traditional GAN structure, we incorporate an additional
L1 loss that compares the ground truth contour sketches with
the predictions in addition to the adversarial loss of GAN.
For generating contour sketches of cars with imperfect align-
ments, we freeze the weight that is trained with the contour
sketches database [31] and predict sketches with rendered
images from certain perspectives (front, top, side) with a
copper material which empirically best resemble the samples
from the previous database and then downsize the normal-
ized cube faces to a 256×256 resolution for a more efficient
generation process.

To create the depth and mask images, we set up a template
cube that contains the normalized complete car shapes and
then obtain depth and rendered images from each face of the
cube. For efficient calculation, we utilize a pixel shader and
store themasfloating-point values.We ignore the bottom face
of the car and do not produce the corresponding depth and
mask. This is because the bottom of the car typically consists
of complicated geometry involving mechanical gears, which
is unrelated to our application.

Compared to existing databases that poorly resemble real-
istic sketches such as the Laplacian filter-based approach
[37], our mesh augmentation framework creates high-quality
sketch-like annotations and generates a new database that
solves the limitation of sub-optimal performance when the
trained model is applied to real-world scenarios.

3.3 The registered 3D point cloud representation

We follow [37] to generate a registered 3D point clouds for-
mat from the car meshes. The importance of the registration
process is that it allows machine learning systems to have
a uniform input vector for effective learning. In our system,
this is particularly helpful when we use lazy learning intro-
duce fine details into the car shape. We will give a summary
of themethod here. Readers are referred to [37] for the imple-
mentation details.

We fist generate a point cloud format using Poisson sam-
pling [8]. As we are aiming for a registered point cloud
format, we need to have the same number of points per car.
We control the total number of points by iteratively changing
the radius of the Poisson sampling process. Once the number
is within an acceptable range, we randomly take away points
such that the number of point reaches a predefined value,
which is set as 10,000 in our system.

We then register the point clouds from different cars by
considering this process as an Earth Mover problem [19,46].
This means that we will first select one point cloud randomly

Fig. 3 Examples of 3D car meshes synthesized with our feature-
preserving data augmentation method

Fig. 4 From left to right: the template, a car shape, and the flow for
mapping them

as the template, while treating all the rest as targets. For
each point in the template point cloud, we will find the best
mapping point in the target point cloud, such that the total
distance between all template-target point pairs isminimized.
Such one to onemappings for all points between the template
and the target point clouds are called flow. Figure3 visualizes
the flow between the template and the target.

4 Generative adversarial network for car
shape reconstruction

In this section, we present a deep neural network to recon-
struct 3D car shapes from 2D contour sketches. With a
GAN-based network, our method is capable of modelling
complicated and distinctive shapes with an effective training
process, and has the ability to generate high-quality shapes
from a single contour sketch.

In the first stage of car shape reconstruction, we adapt
Generative Adversarial Network (GAN) [15] for getting the
depth images and reconstruct a rough 3D shape that resem-
bles the 2D contour sketches, as such a generative model has
shown promising results in image translation by altering the
input with a different style. After the shapes of cars are gen-
erated, we introduce the details of the car in the process of
the second stage.

4.1 The design of the generative adversarial
network

We propose a GAN-based network that learns from con-
tour sketches and 3D shapes to ensure a wide variety of car
shapes. Compared to previous designs such as Variational
Autoencoder (VAE) [27], GANs share superior performance
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[6,24,51] in terms of the appearance of the output. More
importantly, our novel network design takes input at the
latent vector layer and generates multiple views from ran-
dom noises and thus reduces the expensive training cost and
allows a larger variety of car shapes. To further highlight
the distinctive features among different car shapes during
the reconstruction such as spoilers and rear wings, instead of
directly outputting the 3D point cloud [5,11] or the voxels
[7,9] of a car, we propose to output a set of depth images
from the side, top, front and rear views, and reconstruct the
3D vertices by combining them.

We adapt an encoder–decoder network structure as the
generator for creating depth images [29]. We modified the
design of the generator to add noise directly to the latent
space, as shown in Fig. 4. The decoder needs to generate
depth images in multiple predefined views. On the one hand,
existing research typically prepares multiple decoders, with
one decoder generating one output view [33]. However,
such an approach increases computational cost and memory
requirement significantly, considering that we need to gener-
ate five different views (i.e. front, rear, left, right, and top). On
the other hand, traditional cGAN networks add noises to the
input through concatenation, resulting in inefficient memory
usage with increased input resolutions.

As a solution, our network shares the encoder amongmul-
tiple views, and we novelly control the input at the latent
vector layer to solve both limitations. This design is driven
by the observation that there is shared information across
different views. By sharing the same encoder, such informa-
tion can be discovered. Apart from the massive reduction in
memory usage and training time, such a set-up allows the
different output views to be more coherence and produces
higher quality results. We justify our choice in the network
design by conducting an ablation test in Sect. 6.3.

4.2 The loss function

For the depth images, we implement two loss functions—the
mean absolute error (MAE, L1 loss) on the generated depth
images and theMAE on their Laplacian representations as in
our pilot study [37]. In particular, minimizing the MAE loss
on the generated depth images can preserve the overall shape
and structure of the car.On the other hand, including theMAE
loss on the Laplacian representation can better preserve the
surface appearance. Readers are referred to [37] for more
details and justifications.

An adversarial loss is added to the discriminator. By
concatenating all views of depth images and input to the
discriminator, the model learns to distinguish if the set of
depths is real or not. Masks are one of the sub-task outcomes
for depths, so we ignored such mask images when training
the discriminator. By training a single discriminator for mul-

tiple views, this design can save memory usage and learn the
relationship between views simultaneously.

The final loss function is expressed as:

E =
(
Dref − Drec) ◦ Mref

)
L1

+
(
Mref − Mrec

)
BCE

+ (
(
�Dref − �Drec) ◦ Mref)

)
L1

+ ADVLoss (1)

ADVLoss = arg min
G

max
D

{logD(S,Dref)

+ log(1 − D(S,G(S, z))} (2)

whereDref andMref are depth andmask images of the ground
truths, Drec and Mrec are those of reconstructed images, S
is input Sketch image, the subscripts L1 and BCE (binary
cross-entropy) represent the calculation metrics, � means
Laplacian filtering and ◦ is the Hadamard product, ADVLoss
is the adversarial loss function, G is the generator, D is the
discriminator, and z is the random noise vector.

4.3 Surface reconstruction

In this section, the process for reconstructing a rough point
cloud from the generated depth and mask images generated
by our proposed framework is presented.

As in our pilot study [37], themask and depth images pairs
from each view can be used for reconstructing the 3D point
cloud of a part of the car. By aligning the parts reconstructed
from different views, the overall shape of the car can be cre-
ated (Fig. 5 (left)) as a single point cloud. The surface of
the entire car (Fig. 5 (middle)) can then be reconstructed by
applying Poisson surface reconstruction to the point cloud of
the car. With the surface of the car, we can uniformly sample
points from it and this step is equivalent to the point cloud
standardization process as in the database creation (Sect. 3.3).
By this, the register point cloud (Fig. 5 (right)) can be directly
compared with the example cars in our database and similar
cars will be used in the lazy learning stage (Sect. 5) to add
fine details to the car shape.

4.4 Implementation details

Our framework is implemented with Tensorflow. For opti-
mization, we use Adam solver with a learning rate 1e-5. The
decoder has a dropout ratio of 0.5 except for the last layer.
Inspired by pix2pix [24], We use Leaky ReLU as the activa-
tion function for the hidden layers in the encoder, and ReLU
for that in the decoder. We use tanh as the activation func-
tion for output layers. More details regarding the network
architecture can be referred to in Fig. 5. To achieve high effi-
ciency, the resolution of the images that are inputted in GAN
is 64 × 64. To ensure an accurate evaluation with unaltered
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Fig. 5 The design of our generative adversarial network

data, we train the system using the data generated by data
augmentation, and test the systemwith the original data from
ShapeNet [4].

5 Lazy learning for fine details

We follow our preliminary work [37] in developing lazy
learning algorithms to reconstruct local details. Here, we
give a summary of the algorithms and highlight the important
system designs. We refer the readers to [37] for the imple-
mentation details.

While the main bodies of cars share a lot of common
geometric similarities, the fine details such as side mirrors
can be different. Learning a universal model from all cars
with fine details is therefore highly ineffective. Motivated by
the success of lazy learning in mesh processing [3,20,45], we
propose to adapt lazy learning to reconstruct the details.

Unlike traditional approaches that generalize data in the
whole database as a preprocess, lazy learning postpones the
generalization to run-time [3]. As a result, it can utilize
run-time information to limit the scale of learning. In par-
ticular, given a run-time query, relevant data in the database
can be extracted and a small-scale learning process can be
performed. By only considering the most relevant data, the
common features that may be insignificant on a global scale
can be successfully represented. Besides, the similarity of
relevant data allows lazy learning to use amuch lower dimen-
sional latent space comparing to traditional methods.

5.1 Relevant data search

Given a car shape generated in Sect. 4, we search for the
most relevant samples from the database and perform lazy

learning. As the point cloud is registered (i.e. it aligns with a
predefined template car shape), we can effectively calculate
the distance using the sum of Euclidean distances from all
points between two point clouds. To reduce the high dimen-
sionality of the point clouds during searching, we propose to
apply Principal Component Analysis (PCA) onto the posi-
tion of the point clouds to generate a search space, instead of
using the Cartesian space. Searching with the more impor-
tant components of PCAallows a faster searchwith less focus
of fine details. Following [37], we set the root mean square
distances of the 40 PCA components to find k = 5 nearest
neighbours to achieve good results.

5.2 Learning and optimization in local space

With the k nearest neighbours selected from the database, we
can then learn a small subspace with PCA. Since these neigh-
bours are similar to each other, the details of the shape can be
well preservedwith a smaller number of components. In such
a subspace, we optimize a set of eigenvalues to construct a
car shape that is as similar as possible to the one generated by
deep learning. We then back-project the eigenvalues to for-
mulate a car shape with details such as the headlight, which
is served as our final output.

We utilize the 3D morphable model [1] to optimize the
eigenvalues of the components with a nonlinear optimiza-
tion process. Since the point clouds are registered, we use a
simple point-to-point Euclidean distance to evaluate the dis-
tance between the optimizing shape and target shape in the
Cartesian space. To obtain the Cartesian representation of
the optimizing shape, we simply back-project the optimized
eigenvalues to the Cartesian space.
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Fig. 6 From left to right: the reconstructed shape, the reconstructed
surface, and the registered point cloud

Fig. 7 Intermediate outputs. From top to bottom: sketches,meshes from
generated depth images, reconstructed surfaces, sampled point clouds
on surfaces, and point clouds with details

We propose a simple preprocess that constructs a more
representative local PCA space with the k nearest neigh-
bours to further improve the optimization process. Based
on the observation that there are still small variations in car
shapes within the k nearest neighbours, which distracts the
system from the main objective of obtaining the detailed
shape features, we pre-optimize these shapes individually
using the same morphable model-based optimization pro-
cess described above, such that they share a similar shape
before we construct the local PCA space. This way, the sig-
nificant components of the local PCA space can be more
representative on the detailed shape features (Fig. 6).

6 Experimental results

We will first present the experimental results on reconstruct-
ing 3D car shape from input sketches. Next, we quantitatively
analyse the training loss during the training process to
show the convergence of the proposed framework. Finally,
a comparison with the state-of-the-art method [37] will be
presented to demonstrate the results obtained from different
network architectures and justify our choice.

The training of the deep learning system is performed
with an NVIDIA GeForce RTX 2080 Ti GPU that has 11GB
VRAM.With the batch size of 32, the training finishes within
a few days. The run-time system is performed on a lower-

end computer with an NVIDIA GeForce 1050 Ti GPU that
has 4GB VRAM. The reconstruction of a car takes approx-
imately 15 seconds to finish, with 5 seconds on car shape
reconstruction (i.e. deep learning) and 10 seconds on recon-
struction detail features (i.e. lazy learning).

6.1 Reconstructing 3D shape from contour sketches

Since different users may have different drawing styles (e.g.
more cartoon-like), real-world sketches are not objective to
evaluate the performance of the proposed system. As a result,
we utilize synthetic contour sketches for testing.

Examples of the output yielded by every major step of
the proposed framework are illustrated in Fig. 7. Stating with
the input sketch (top row), depth images are computed for
reconstructing the 3D meshes (second row). Next, a smooth
surface is reconstructed from themesh (third row) and a point
cloud (fourth row) is sampled from the surface for retrieving
similar car shapes from the database for details refinement.
Finally, the refined car model (bottom row) is created using
the proposed lazy learning module. It can be seen that the
meshes (Fig. 7, second row) reconstructed from the proposed
GAN framework can already resemble the car shape speci-
fied in the abstract input sketch. The proposed lazy learning
module further enhances the quality of the 3D models by
adding details such as side mirrors and spoilers (Fig. 7, sec-
ond row). This highlights the effectiveness of the proposed
framework. Readers are referred to Fig. 1 and the video demo
accompanied for more examples.

However, details like grilles or wheels are not encoded
well for practical use of games or movies. The EMD reg-
istration process can cause such low-quality appearances
because the EMD is based on the theory of optimal transport
with global distribution, which can ignore small features.
Besides, the converting process into point clouds can reduce
mesh resolution that is closely related to details.Wewill con-
sider landmarks on 3Dmesh in the sampling and hierarchical
registration process for encoding such small features. Fur-
thermore, the input sketches can affect appearance because
of sparse information comparing with photorealistic images.
Feature extraction from sketches is still an open problem in
the field of deep learning, so we will update our network
structure. An interactive sketch-based system will improve
appearance as well.

While the point clouds generated from the proposed
framework is highly realistic in terms of the overall 3D shape,
the system is less effective in reconstructing meshes with
sharp edges. The underlying problem is related to the 3D
point sampling process during the 3D mesh registration. The
3D point sampling tends to sample points around sharp edges
instead of along the edges, which is a well-known problem in
3D point sampling [21]. As a result, the sharp edges may be
lost when the 3D surface is reconstructed from the sampled
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Fig. 8 Lower-quality results for sketches that have few similar samples
in the database

points using triangulation. While this is an interesting topic
to explore, this is out of the scope of this work. Exploring the
feasibility of using more advanced sampling methods such
as [12] or [18] can be an interesting future direction to further
enhance the quality of the reconstructed 3D meshes.

We further conducted an experiment to have an in-depth
analysis of the proposed lazy learning module. The proposed
lazy learning module plays an important role in adding fine
details such as the wheels and grills to the reconstructed 3D
car shape. Here, we focus on the k-value that defines how
many nearest neighbour will be selected for learning the
local space (Sect. 5). Different k-values are being used in
this experiment, and the results are presented in Fig. 8. From
the results, it can be seen that the points clouds tend to be
more noise and contain more holes when k = 1 and k = 3
(Fig. 8, second and third rows). In addition, wrong details can
be added to the final 3D point clouds as the lazy learning pro-
cess is biased to a small number of samples when the k-value
is small. For example, the shape of the bed of the truck on
the fifth column (from left to right) in Fig. 8 is different from
the input sketch when k = 1 and k = 3. On the other hand,
the 3D point clouds generated using k = 7 (Fig. 8, bottom
row) do not have the aforementioned artefacts. However, car
shapes tend to be over-smoothed. Finally, using k = 5 (Fig. 8,
fourth row) can generate a smooth surface while resembling
the shape specified in the input sketch.

While our proposed framework can generate realistic car
shapes from sketch images, some of the low-quality results
are presented in Fig. 9 for further analysis. We found that
low-quality results are usually associated with the car shapes
that are uncommon in the data set. The underlying issue is
related to the lack of similar car shapes for the refinement
in the lazy learning step. For example, the 3D mesh (Fig. 9,
second row) generated by the proposed GAN framework has
similar shapes as in the input sketch. However, the refined

point clouds (Fig. 9, bottom row) changed the shape of the
cars, especially the leftmost and rightmost columns in Fig. 9.

6.2 Training loss

Here, we present the results of a quantitative evaluation of the
performance of the training process in the proposed frame-
work. A wide range of training loss plots are illustrated in
Fig. 6. The plots also contain the training losses obtained
using 4 variants of the proposed decoder network as an abla-
tion study and more detailed will be given in Sect. 6.3.

In particular, the depth loss, mask loss, Laplacian loss,
and total loss are reduced stably as training progress. This
highlights the proposed deep learning framework converges
and can effectively improve the quality of the generatedmesh
in the training process. For the generator and discriminator
losses (Fig. 6d, e), the oscillations are mainly caused by the
competitive nature between the generator and discriminator,
which is a typical pattern in GAN frameworks and the losses
show a decreasing trend in general.

6.3 Comparing with the state-of-the-art and
ablation tests on different decoder network
architectures

In this section, we present the result of an ablation study to
justify our network design and followed by comparing our
results with those obtained using the state-of-the-art method
[37]. As explained in Sect. 4.1, decoders are used for generat-
ing depth and masks in different views for reconstructing the
3D shape of the car from input sketches. While the images in
different views have a different appearance, they are associ-
ated with the same underlying 3D shape. As a result, Nozawa
et al. [37] proposed sharing a common layer among the
decoders in the network design to preserve the underlying
structure and improve the consistency among all synthesized
views. In our proposed encoder–decoder network (Fig. 4),
each decoder consists of five layers. In the ablation test, we
vary the number of shared layers in the decoder from 0 (i.e.
not sharing any layer) to 3. The different decoder architec-
tures are illustrated in Fig. 10.

A wide range of 3D car shapes are reconstructed using
different decoder network architectures, and the results are
illustrated in Fig. 11a. It can be seen that our proposed
decoder architecture without sharing any layer (second row
in Fig. 11) produces the best results in terms of reproducing
the car shape with a smooth surface. On the other hand, shar-
ing layers (third, fourth and fifth rows in Fig. 11) result in 3D
point clouds with less distinguishable shape and noisy/rough
surface, which can be caused the loss of balance between pre-
serving the underlying structure among decoders and refining
each view. On the other hand, Nozawa et al. [37] reported
that results can be obtained using a decoder network with 1
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Fig. 9 Losses across epoch during the training stage

Fig. 10 Different decoder network architectures for the ablation test

shared layer. This highlights the differences between our pro-
posed GAN framework and the VAE framework presented in
[37]. Unlike the VAE network, noise is added when encod-
ing features from an input sketch in our GAN network. As in
typical GANs, the noise works as the latent vector and rep-
resents the underlying 3D information of the original shape.
As a result, the concept of reconstructing the underlying 3D
shape by having a common layer for different depth views in
the decoder is not needed.Without such an explicit constraint
among different views, it can be observed that our proposed
framework can still generate high-quality results.

As presented in Sect. 6.3, we evaluated the performance
of our proposed method quantitatively. In Fig. 6, the losses of
the 4 variants (i.e. sharing 0–3 layers) of the decoder network
are plotted. It can be seen the losses obtained by 0-layer
shared (coloured in red) are the lowest in general. This further
justifies our decoder network design.

Finally, we compare our results with those generated by
the state-of-the-art method [37] and the results are presented
in Fig. 11. The results highlight that our proposed framework

generatedmore realistic results that are closer to the car shape
as in the input sketch and contains more fine details on the
mesh. In contrast, the meshes generated by [37] are having
less distinctive shapes and a lot of artefacts such as holes and
noise on the surface.

7 Conclusion and discussions

In this paper, we present a system to reconstruct detailed 3D
car shapes with a single 2D contour sketch. To effectively
learn the correlation between contour sketches and 3D cars,
we propose a generative adversarial network (GAN) with
an intermediate multi-view depth image representation as to
the output and construct the 3D cars as a post-processing
step. To ensure the volume and diversity of the training data,
we propose a feature-preserving augmentation pipeline to
synthesize more car meshes with realistic sketch-like anno-
tationswhile keeping the shape of important features. Finally,
since deep learning has limited capability in representing fine
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Fig. 11 The 3D point clouds reconstructed with different decoder architectures. From top to bottom: input sketches, results of the decoder with no
shared layer, sharing the first layer, sharing the first two layers, and sharing the first three layers

details, we propose a lazy learning algorithm to construct a
small subspace based only on a few relevant database sam-
ples for optimizing a car shape with fine detail features. We
show that the system performs robustly in creating cars of
substantially different shapes and topologies, with realistic
detailed features included.

Our main focus in this work is to produce a 3D car models
from a single sketch image given by the user. As a result, the
proposed framework mainly resembles the exterior shape of
the car without considering the configurations of the internal
mechanical parts. One of the interesting future direction is to
include additional constraints in the 3D car shape generation
module to reserve space for the internal car parts.

We use multi-view depth images as an intermediate rep-
resentation in the generative adversarial network. The two
major advantages are that we do not need to deal with 3D
deep learning, which is memory hungry and complicated to
train, and we can have a more explicit 2D-to-2D correlation.
Currently, we combine the depth images as a post-processing
step. However, it is possible to consider them as a means
of rectifying the output space and construct extra layers to
learn the regression between multi-view depth images and
3D shapes. One future direction is to explore network archi-

tectures for this purpose and introduce more views of depth
images in a middle layer of the network for supervision.

The proposedmethodology is generic to product design. It
is expected that the framework can be applied to producing
3D shapes of other types of products from sketch images.
This requires a newdata setwith paired sketch images and 3D
model for the new product type. In the future, wewill explore
in this direction such as producing 3D furniture models from
sketch images with the IKEA data set [32].
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