Tracking Drones Across Different Platforms with Machine Vision
Security Technology Research Innovation Grants Programme (S-TRIG)

Security Technology Research Innovation Grants Programme (S-TRIG)
Funding Source: The Catapult Network (S-TRIG), UK
Reference Number: 007CD
Value: £32,727
2020 - 2021

About the Project


People



Organizations


YouTube


Publications

Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark
Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark H5-Index: 80#Citation: 94#
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021
Brian K. S. Isaac-Medina, Matthew Poyser, Daniel Organisciak, Chris G. Willcocks, Toby P. Breckon and Hubert P. H. Shum
Webpage Cite This Plain Text
Brian K. S. Isaac-Medina, Matthew Poyser, Daniel Organisciak, Chris G. Willcocks, Toby P. Breckon and Hubert P. H. Shum, "Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark," in ICCVW '21: Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, pp. 1223-1232, IEEE/CVF, Oct 2021.
Bibtex
@inproceedings{issacmedina21unmanned,
 author={Isaac-Medina, Brian K. S. and Poyser, Matthew and Organisciak, Daniel and Willcocks, Chris G. and Breckon, Toby P. and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops},
 series={ICCVW '21},
 title={Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark},
 year={2021},
 month={10},
 pages={1223--1232},
 numpages={10},
 doi={10.1109/ICCVW54120.2021.00142},
 publisher={IEEE/CVF},
}
RIS
TY  - CONF
AU  - Isaac-Medina, Brian K. S.
AU  - Poyser, Matthew
AU  - Organisciak, Daniel
AU  - Willcocks, Chris G.
AU  - Breckon, Toby P.
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops
TI  - Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark
PY  - 2021
Y1  - 10 2021
SP  - 1223
EP  - 1232
DO  - 10.1109/ICCVW54120.2021.00142
PB  - IEEE/CVF
ER  - 
Paper GitHub
UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery
UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery
Proceedings of the 2022 International Conference on Computer Vision Theory and Applications (VISAPP), 2022
Daniel Organisciak, Matthew Poyser, Aishah Alsehaim, Shanfeng Hu, Brian K. S. Isaac-Medina, Toby P. Breckon and Hubert P. H. Shum
Webpage Cite This Plain Text
Daniel Organisciak, Matthew Poyser, Aishah Alsehaim, Shanfeng Hu, Brian K. S. Isaac-Medina, Toby P. Breckon and Hubert P. H. Shum, "UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery," in VISAPP '22: Proceedings of the 2022 International Conference on Computer Vision Theory and Applications, pp. 136-146, SciTePress, Feb 2022.
Bibtex
@inproceedings{organisciak22uavreid,
 author={Organisciak, Daniel and Poyser, Matthew and Alsehaim, Aishah and Hu, Shanfeng and Isaac-Medina, Brian K. S. and Breckon, Toby P. and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2022 International Conference on Computer Vision Theory and Applications},
 series={VISAPP '22},
 title={UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery},
 year={2022},
 month={2},
 pages={136--146},
 numpages={11},
 doi={10.5220/0010836600003124},
 isbn={978-989-758-555-5},
 publisher={SciTePress},
}
RIS
TY  - CONF
AU  - Organisciak, Daniel
AU  - Poyser, Matthew
AU  - Alsehaim, Aishah
AU  - Hu, Shanfeng
AU  - Isaac-Medina, Brian K. S.
AU  - Breckon, Toby P.
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2022 International Conference on Computer Vision Theory and Applications
TI  - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery
PY  - 2022
Y1  - 2 2022
SP  - 136
EP  - 146
DO  - 10.5220/0010836600003124
SN  - 978-989-758-555-5
PB  - SciTePress
ER  - 
Paper GitHub

Links


HomeGoogle ScholarYouTubeLinkedInTwitter/XGitHubORCIDResearchGateEmail
 
Print