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Abstract

Pedestrian trajectory prediction is critical for ensuring safety in
autonomous driving, surveillance systems, and urban planning
applications. While early approaches primarily focus on one-
hop pairwise relationships, recent studies attempt to capture
high-order interactions by stacking multiple Graph Neural
Network (GNN) layers. However, these approaches face a
fundamental trade-off: insufficient layers may lead to under-
reaching problems that limit the model’s receptive field, while
excessive depth can result in prohibitive computational costs.
We argue that an effective model should be capable of adap-
tively modeling both explicit one-hop interactions and implicit
high-order dependencies, rather than relying solely on archi-
tectural depth. To this end, we propose ViTE (Virtual graph
Trajectory Expert router), a novel framework for pedestrian
trajectory prediction. VIiTE consists of two key modules: a
Virtual Graph that introduces dynamic virtual nodes to model
long-range and high-order interactions without deep GNN
stacks, and an Expert Router that adaptively selects interaction
experts based on social context using a Mixture-of-Experts
design. This combination enables flexible and scalable reason-
ing across varying interaction patterns. Experiments on three
benchmarks (ETH/UCY, NBA, and SDD) demonstrate that
our method consistently achieves state-of-the-art performance,
validating both its effectiveness and practical efficiency.

Code — https://github.com/Carrotsniper/ViTE

Introduction

Human trajectory prediction aims to forecast future pedes-
trian paths based on observed motion histories. It plays a vital
role in autonomous driving for tasks such as collision avoid-
ance and emergency braking (Bai et al. 2015; Luo et al. 2018;
Liu et al. 2021), and is also essential in video surveillance
for identifying suspicious activities (Luber et al. 2010; Shi
et al. 2021). This task is challenging due to the uncertainty of
human behavior and the varying relevance of surrounding in-
dividuals: nearby agents may not interact, while distant ones
can still be coordinated. This complexity requires models
that can flexibly capture interactions across multiple scales.
Early approaches primarily focus on pairwise interactions,
capturing local spatial dependencies between individuals.
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Figure 1: Comparison of interaction modeling strategies. (a)
Traditional methods capture only one-hop interactions. (b)
Existing methods stack multiple GNN layers to model high-
order dependencies. (¢) Our method introduces virtual nodes
to capture high-order interactions efficiently.

Representative methods like Social-LSTM (Alahi et al. 2016;
Gupta et al. 2018) utilize social pooling to aggregate informa-
tion from neighboring agents within a fixed window, while
SS-LSTM (Xue, Huynh, and Reynolds 2018) introduces oc-
cupancy maps to encode nearby spatial configurations. With
the advancement of relational modeling, graph-based meth-
ods (Huang et al. 2019; Kosaraju et al. 2019; Mohamed et al.
2020; Shi et al. 2021) have become prominent, representing
pedestrians as nodes and their interactions as edges in a graph,
enabling data-driven learning of pairwise relationships via
Graph Neural Networks (GNNs) as shown in Figure 1 (a). To
capture richer interaction dynamics, more recent efforts have
focused on modeling high-order interactions—influences that
are not directly observable between agent pairs but emerge
through multi-hop connections within a crowd. Methods such
as HighGraph (Kim et al. 2024) and PCHGCN (Chen, Sang,
and Zhao 2025) address this by stacking multiple GNN lay-
ers (Figure 1 (b)), allowing information to propagate across
longer distances and indirectly connected agents. These mod-
els have shown improvements in capturing group behavior
patterns and non-local dependencies.

Despite their effectiveness, high-order interaction mod-
eling via deep GNNs introduces two key challenges. The
first is depth-related inefficiency. Stacking too few GNN
layers results in under-reaching, where the receptive field
is insufficient to cover relevant agents beyond local neigh-



borhoods, leading to incomplete interaction modeling (Lu
et al. 2024). Conversely, increasing depth can cause over-
smoothing (Rusch, Bronstein, and Mishra 2023), where re-
peated message passing dilutes node-specific features, mak-
ing individual agent representations less discriminative. This
trade-off poses a fundamental bottleneck for graph-based
trajectory models that rely solely on depth to model rela-
tional complexity. Another major limitation is the lack of
contextual adaptability. In real-world crowds, the influence
of other pedestrians varies across scenes and situations: in
some cases, immediate neighbors dominate decision-making,
while in others, long-range or indirect interactions play a
critical role. However, most existing methods apply a fixed,
shared relational structure or aggregation scheme to all agents,
ignoring this diversity. As a result, they fail to dynamically
adjust the reasoning process according to individual agents’
social context and interaction scale.

To address these limitations, we propose ViTE (Virtual
graph Trajectory Expert router), a novel framework for pedes-
trian trajectory prediction. It comprises two key components.
First, the Virtual Graph, introduces dynamically assigned
virtual nodes that act as relational mediators between pedes-
trians (Figure 1 (c)). These nodes serve as intermediate hubs
for message exchange, enabling the model to capture long-
range dependencies and high-order interactions without deep
GNN stacks. This compact and learnable structure not only
mitigates under-reaching but also improves efficiency and
expressiveness in modeling long-range relations. Second, the
Expert Router adopts a Mixture-of-Experts (MoE) design
to enable context-aware interaction reasoning. We introduce
multiple interaction experts, each specialized in a particu-
lar interaction scale (e.g., one-hop or high-order), are coor-
dinated by a gating network that dynamically routes each
agent’s representation to the most relevant experts. This adap-
tive mechanism allows ViTE to flexibly integrate diverse re-
lational patterns based on social context. Together, these two
modules form a cohesive and scalable system that overcomes
depth limitations and enables fine-grained social reasoning
for trajectory prediction. Our main contributions are:

* We propose ViTE, a novel framework for pedestrian tra-
jectory prediction that enables efficient and adaptive high-
order interaction modeling.

* We design a Virtual Graph module that introduces dy-
namic virtual nodes as relational hubs to capture indirect
social dependencies.

* We develop an Expert Router based on a Mixture-of-
Experts mechanism to perform context-aware reasoning
across multiple interaction scales.

Related Work
Interaction Modeling for Trajectory Prediction

Early work on pedestrian trajectory prediction focused on
pairwise interactions to capture the influence of nearby agents.
Social-LSTM (Alahi et al. 2016; Gupta et al. 2018) intro-
duced a pooling mechanism to aggregate neighboring hidden
states, while SS-LSTM (Xue, Huynh, and Reynolds 2018)
encoded spatial layouts via occupancy maps to enhance lo-
cal interaction modeling. However, these methods struggle

with complex multi-agent dynamics due to their limited re-
lational structure. To address this, graph-based approaches
(Bae and Jeon 2021; Qiao et al. 2022; Bae and Jeon 2023;
Qiao et al. 2024) have been proposed, representing pedestri-
ans as nodes and their interactions as edges in a graph. ST-
GAT (Huang et al. 2019) employs graph attention (Qiao et al.
2025; Shao et al. 2025) to adaptively weigh neighboring in-
fluences, Social-STGCNN (Mohamed et al. 2020) combines
spatial and temporal convolutions, Social-BiGAT (Kosaraju
et al. 2019) models bidirectional influence flows, and SGCN
(Shi et al. 2021) applies sparse GCNs to capture spatial-
temporal dependencies. These methods advance beyond pair-
wise designs by leveraging GNNs to jointly model spatial
and temporal dependencies. To capture high-order interac-
tions, which refer to indirect influences mediated through
intermediate agents, recent works such as HighGraph (Kim
et al. 2024) and PCHGCN (Chen, Sang, and Zhao 2025)
stack multiple GNN layers to enable multi-hop message pass-
ing. While effective for modeling non-local dependencies,
this strategy faces a trade-off: shallow networks suffer from
under-reaching (Lu et al. 2024; Li et al. 2025b), while deeper
ones risk over-smoothing, degrading representation quality
(Rusch, Bronstein, and Mishra 2023). To this end, we intro-
duce adaptive virtual nodes that serve as global relational
hubs, effectively capturing high-order interactions by mediat-
ing indirect dependencies without relying on deep GNNss.

Mixture of Expert

Mixture of Experts (MoE) is a modular neural architecture
that partitions the input space and routes each input to a subset
of specialized experts, selected dynamically by a gating net-
work (Yuksel, Wilson, and Gader 2012; Jiang et al. 2024; Mu
and Lin 2025). Unlike traditional ensembles, MoE activates
only a few experts per input, enabling high model capacity
with reduced computational cost. This design has shown suc-
cess in NLP (Jacobs et al. 1991; Shazeer et al. 2017), vision
(Wang et al. 2020; Riquelme et al. 2021), and multi-modal
learning (Mustafa et al. 2022). In graph learning, MoE has
been applied to aggregate across neighborhoods (Abu-El-
Haija et al. 2020), correct bias (Hu et al. 2022), and enhance
molecular prediction (Kim et al. 2023). Recent works ex-
plore top-k input routing (Zhou et al. 2022) and multi-hop
fusion (Wang et al. 2023), but often rely on fixed routing or
task-specific designs, limiting adaptability. In this work, we
propose a MoE-based expert router for trajectory prediction,
which enables context-aware routing over one-hop and high-
order graph interactions. By dynamically selecting the most
relevant expert for each node, our model effectively adapts to
diverse interactions in pedestrian crowds.

Methodology
Problem Formulation

Pedestrian trajectory prediction forecasts future posi-
tions from past movements. Mathematically, given a
scene with N pedestrians observed over 1,5 time steps,
the trajectory of pedestrian ¢ is denoted as X; =
(z},yi) | t € [=Tops + 1,...,0] for the observed past, and
Y, = (a},y;) |t €[1,...,Tpreq] for the future ground-truth.
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Figure 2: Overview of ViTE. Given pedestrian trajectories, we first construct interaction graphs. In (a), the high-order interaction
expert captures indirect, long-range dependencies via Virtual Graph Learning, while (b) illustrates the one-hop expert modeling
direct interactions. These expert outputs are then dynamically fused by a MoE-based Expert Router, as depicted in (c), enabling
context-aware routing of graph information. Finally, an MLP-based decoder outputs future trajectories for each pedestrian.

Stacking all pedestrians yields the tensors X € RN xTovs x2

and Y € RNV*Trreax2 representing the observed and future
trajectories respectively, with each position in 2D coordinates.
The goal is to minimize the error between the predicted tra-

jectories Y and ground-truth future trajectories Y.

Feature Initialization

For each pedestrian ¢, we construct the input representation
from two complementary feature types: absolute spatial co-

ordinates p; = (x,y) and temporal displacement vectors

r; = (rg,1y), where rz(»t) = pgt) fpz(-t_l) captures the motion

dynamics. The final input feature is obtained through concate-
nation: X" = [p;;r;] € RTevs*4 We represent pedestrian
interactions using a spatial interaction graph G = (V,€),
where each node n; € V corresponds to pedestrian ¢, and
each edge e;; € £ models one-hop relationships. Node fea-

tures are initialized as n§°> = Frode(X), where Fyoae(+)
denotes a Multi-Layer Perceptron (MLP). To capture social
dependencies, we dynamically determine the graph connec-
tivity via a k-nearest neighbor strategy based on feature sim-
ilarity. For each connected pair (¢, j), we compute the ini-
tial embedding feature using a relational transformer (RT)
layer (Diao and Loynd 2023; Lee et al. 2024) equipped with

sparse attention to ensure computational efficiency, denoted

0 _ (0) . .
asn; ;. = RT(n; ", M), where M is connection mask.

High-order Interaction Modeling via Virtual Graph

Capturing long-range dependencies is essential in trajectory
prediction, as agents often influence one another beyond their

immediate neighbors through high-order interactions. How-
ever, traditional GNNs based on first-order aggregation inher-
ently suffer from under-reaching—the inability to propagate
information across distant nodes within shallow architectures
(Qian et al. 2024). Although stacking GNN layers helps cap-
ture high-order interactions (Kim et al. 2024; Chen, Sang,
and Zhao 2025), it significantly increases computational cost.

To quantify this limitation, we calculate the effective resis-
tance as a structural indicator of communication efficiency in
graphs. Formally, the effective resistance between two nodes
¢ and j is defined as:

Rij = (e; — ;)" LT (e; — €;), (1

where LT is the Moore-Penrose pseudoinverse of the graph
Laplacian, and e;, e; are standard basis vectors. Lower R;;
indicates more efficient message propagation (Lu et al. 2024).
For example, in the chain-structured graph shown in Figure 3
(left), node a requires four hops to reach node e, resulting in
a high resistance of R,. = 4.0, which hinders the efficiency
of long-range communication.

To address this issue, we propose the Virtual Graph,
which introduces a small set of virtual nodes as mediators to
facilitate high-order long-range communication. As shown
in Figure 3 (right), adding a virtual node dramatically re-
duces the resistance between distant nodes (e.g., R, = 1.2),
enabling more efficient global information flow.

Specifically, we construct a high-order interaction graph
Ghigh = (N U Vsirtual, Enign ), where N denotes the set of real
pedestrian nodes, and Vyimya = {v1,v2, ..., vy } is a set of
virtual nodes acting as communication hubs. These virtual
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Figure 3: Comparison of effective resistance (R,.) between
a standard chain graph (left, R,. = 4.0) and a virtual-node-
enhanced graph structure (right, R,. = 1.2). Lower effective
resistance indicates more efficient message propagation and
improved global connectivity.

nodes are instantiated per training batch and initialized with
diverse embeddings sampled from a learnable distribution:

Vi)~ D, k=1,...,V, @)

where D,, is designed to promote representational diversity.
To explicitly capture high-order dependencies, we propose a
structured two-stage message passing scheme.

Stage 1 (Real-to-Virtual Message Aggregation). Each real
node n; € N sends its node embedding to all virtual nodes,
enabling them to aggregate diverse contexts into high-level
representations. The embedding of each virtual node vy, is
updated as:

v,(cl) = GNN,_,, (v,(co),AGGrHv ({nz(»o) | n; € J\f})) ,
3

where AGG;_,, is a permutation-invariant aggregator (e.g.,
mean or attention), and GNN,_,, is a standard GNN module
such as a Graph Attention Network (Velickovic et al. 2018).

Stage 2 (Virtual-to-Real Message Distribution). Each up-
dated virtual node vy broadcasts its high-level contexts to all
pedestrian nodes, enabling them to integrate indirect high-
order interactions into their representations. The embedding
of each pedestrian node n; is updated as:

n{" = GNNy_,; (0", AGG, - ({v(" | vk € V1)),
4)

where AGG,_,; is a permutation-invariant aggregator, and

GNN,_,, is a standard GNN module for fusing virtual node

information. The final output is then normalized and activated
(ou)

as: n, piop = GELU (LayerNorm (nz(-l)))

In summary, our virtual graph interaction module inte-
grates both localized and global context by combining one-
hop and high-order message passing mechanisms. The one-
hop graph captures fine-grained local interactions among
neighboring agents, while the virtual-node-enhanced graph
enables efficient modeling of high-order dependencies. To-
gether, these complementary designs equip the model with a
more expressive and scalable interaction representation.

One-hop Interaction Modeling

To capture one-hop interactions among pedestrians, we
define a first-order directed interaction graph Gopehop =
(N, Eone-nop)» Where edges Egne-nop €ncode spatial relation-
ships between neighboring agents based on their similarities

(Lee et al. 2024). This graph supports message passing opera-
tions in GNNs, enabling the modeling of one-hop dependen-
cies among directly connected nodes (Li, Katsigiannis, and
Shum 2022; Li et al. 2025a).

The expert leverages both node and edge features to update
each node embedding. Specifically, each node n; aggregates
information from its neighbors as follows:

my; = 6 (0”0, ef))). )
m; = AGGone'hOP ({mlj | j € A[()ne—hop(i>}) s (6)
n{) o = bu (nf-o), mi) : %

where ¢,,, () denotes the message function that integrates
source node, target node, and edge features; AGGone_hop(~) is
a permutation-invariant aggregation function; and ¢, (-) is the
update function, typically an MLP layer. This design allows
the model to leverage both one-hop structural information
and relation features for direct interaction modeling.

Expert Router

While one-hop and high-order graph structures capture com-
plementary interaction patterns, existing methods typically
adopt a fixed graph design, limiting adaptability to varying
scene complexities. Such rigidity can result in under-reaching
in complex scenarios or redundant computation in simpler
ones. To address this limitation, we propose an adaptive Ex-
pert Router based on the MoE paradigm, which learns a
context-aware routing policy to dynamically allocate inter-
action modeling capacity. Specifically, we treat Gope-hop and
Ghign as two specialized experts responsible for modeling
direct and high-order interactions, respectively. By allowing
each node to selectively attend to the most relevant expert
based on its feature representations.

For each node feature ngo)’ the gating network computes a
soft routing distribution (Hu et al. 2025) over the two experts:

g = Softmax(gb(ngo)))a ®)
s(m”) = W,n® + ¢ Softplus(W,n”), (9

where qb(nl(o)) € R? are the logits over two experts, and
€ ~ N (0,I) adds Gaussian noise for regularization. W, and
W, are learnable projection matrices.

To enable adaptive complexity control and improve effi-
ciency, we adopt a threshold-based Top-P mechanism that
dynamically selects active experts (Huang et al. 2024; Hu
et al. 2025). Unlike traditional MoE methods (Wang et al.
2023) that always fuse all experts, our approach activates
experts based on confidence, enabling lightweight local pro-
cessing for simple cases and triggering global reasoning in
complex interaction scenarios.

Let g; = Sort(g;, descending) be the sorted expert proba-
bilities. The active expert set S; is defined as the minimal set
whose cumulative probability exceeds a threshold p:

k k
S, = k:;gm <p,uU argmkin ;gw >p ,
J= J=

(10)



ETH/UCY Dataset

Subset | GroupNet MemoNet ~ MID NPSN  EqMotion EigenTraj LED  SingularTraj MART PCHGCN| Ours

ETH 0.46/0.73 0.40/0.61 0.39/0.66 0.36/0.59 0.40/0.61 0.36/0.53 0.39/0.58 0.35/0.42 0.35/0.47 0.42/0.65 |0.35/0.49
HOTEL | 0.15/0.25 0.11/0.17 0.13/0.22 0.16/0.25 0.12/0.18 0.12/0.19 0.11/0.17 0.13/0.19  0.14/0.22 0.17/0.28 |0.11/0.17
UNIV | 0.26/0.49 0.24/0.43 0.22/0.45 0.23/0.39 0.23/0.43 0.24/0.43 0.26/0.43 0.25/0.44 0.25/0.45 0.21/0.38 |0.23/0.42

ZARAL1 | 0.21/0.39
ZARA2|0.17/0.33

0.18/0.32 0.17/0.30 0.18/0.32 0.18/0.32
0.14/0.24 0.13/0.27 0.14/0.25 0.13/0.23

0.19/0.33 0.18/0.26
0.14/0.24 0.13/0.22

0.19/0.32
0.15/0.25

0.17/0.29 0.17/0.31 |0.18/0.30
0.13/0.22 0.13/0.23 | 0.13/0.22

AVG  ]0.25/0.44 0.21/0.35 0.21/0.38 0.21/0.36 0.21/0.35

0.21/0.34 0.21/0.33

0.21/0.32  0.21/0.33 0.22/0.37 | 0.20/0.32

Table 1: Performance comparison on the ETH/UCY dataset. Metrics are min ADEyp/min FDEqq. Bold and underline indicate

the best and second-best results.

NBA Dataset
Time ‘ STAR  GroupNet MemoNet MID NPSN  DynGroupNet LED SingularTraj MART ‘ Ours
1.0s | 0.43/0.66 0.26/0.34 0.38/0.56 0.28/0.37 0.35/0.58 0.19/0.28 0.18/0.27  0.28/0.44  0.18/0.26 | 0.17/0.25
2.0s |0.75/1.24 0.49/0.70 0.71/1.14 0.51/0.72 0.68/1.23 0.40/0.61 0.37/0.56  0.61/1.00  0.35/0.50 | 0.35/0.50
3.0s | 1.03/1.51 0.73/1.02 1.00/1.57 0.71/0.98 1.01/1.76 0.65/0.90 0.58/0.84  0.96/1.47  0.54/0.71 | 0.53/0.70
4.0s | 1.13/2.01 0.96/1.30 1.25/1.47 0.96/1.27 1.31/1.79 0.89/1.13 0.81/1.10  1.31/1.98  0.73/0.90 | 0.72/0.91

Table 2: Performance comparison on the NBA dataset. Metrics are min ADEsg/min FDEs. Bold and underline indicate the

best and second-best results.

where p € (0, 1) controls the sparsity level (e.g., p = 0.7).
The selected expert weights are then renormalized as:

Lk ifke S,
i = {ZM " an

0 otherwise.

Given the selected expert set S; and renormalized weights
9i1 from Eq. 11, the final node representation is computed
as a weighted sum:

(out) N (out) (out)
i,router =4i1- nz’,one-hop + 97 21y ,high* (12)

By leveraging soft gating and selective expert activation,
the proposed Expert Router enables context-aware routing
of one-hop and high-order interactions, allowing the model to
dynamically adjust its reasoning complexity based on pedes-
trian behavior patterns.

To prevent routing collapse and promote expert diversity,
we introduce an importance-based auxiliary loss (Hu et al.
2025):

ol Std(g;)

13

Kimp = NZMeangl—i—e (13)
which encourages balanced expert utilization across nodes
and improves the robustness of the routing mechanism.

Trajectory Decoding

For trajectory prediction, we concatenate three feature types

@0 W ]and feed them into K parallel MLP-

[n’L ;g ,pair? ni,routar

based prediction heads to generate diverse trajectories fol-
lowing (Xu et al. 2023; Lee et al. 2024). Given K predicted
trajectories Yz(k) from K prediction heads for pedestrian 4,
we compute the prediction loss by selecting the best trajectory

in terms of minimum /5 distance to the ground truth:

N Tp7 ed

® _
Lprea = NT Dred Z Z m1n||p

i=1 t=1

iy, (14)

(®)

where p;”’ = (xi,y}) is the ground-truth position of pedes-

trian 7 at time ¢, and p(t ) is the corresponding prediction
from the k-th head. The total loss incorporates MoE regular-

ization: £ = Lpreq + ALimp.

Experiments
Experimental Setup

Datasets. We evaluate our model on three widely-used tra-
jectory prediction benchmarks: ETH/UCY (Pellegrini et al.
2009; Lerner, Chrysanthou, and Lischinski 2007), Stanford
Drone Dataset (SDD) (Robicquet et al. 2016), and NBA
SportVU (Mao et al. 2023). The ETH/UCY dataset comprises
five subsets (ETH, HOTEL, UNIV, ZARA1, and ZARA?2),
capturing pedestrian movements across diverse social scenar-
ios. SDD is a large-scale dataset collected from a university
campus. For both ETH/UCY and SDD, we follow the stan-
dard setting in (Lee et al. 2024; Xu et al. 2022b), using 3.2
seconds (8 frames) of observed trajectories to predict the next
4.8 seconds (12 frames). For ETH/UCY, we adopt a leave-
one-out training protocol, training on four subsets and testing
on the remaining one. The NBA SportVU dataset provides
trajectories of 10 players and the ball in real basketball games.
We follow (Xu et al. 2022a; Mao et al. 2023; Lee et al. 2024)
that use 2.0 seconds (10 frames) of past motion to predict the
next 4.0 seconds (20 frames).

Evaluation Metrics. To evaluate the performance, we
adopt two metrics: min ADEy and min FDE, following



SDD Dataset

Time| PECNet GroupNet MemoNet  MID

NPSN  DynGroupNet EigenTraj LED

MART | Ours

4.8s |9.96/15.88 9.31/16.11 8.56/12.66 9.73/15.32 8.56/11.85

8.42/13.58  8.05/13.25 8.48/11.66 7.43/11.82|7.42/11.90

Table 3: Performance comparison on the SDD dataset. Metrics are min ADEyp/min FDEgg. Bold and underline indicate the

best and second-best results.

the evaluation protocol in (Gupta et al. 2018; Lee et al. 2024).
The Average Displacement Error (ADE) measures the mean
Euclidean distance between the predicted and ground-truth
trajectories over all time steps, while the Final Displacement
Error (FDE) focuses on the distance between the predicted
and actual final positions. Given k sampled predictions for
each agent, we report the minimum ADE and FDE among
them, denoted as min ADE;, and min FDE,,.

Comparison with State-of-the-Art Methods

The results on the ETH/UCY dataset are presented in Ta-
ble 1, our method achieves the best overall performance,
with the lowest average ADE/FDE of 0.20/0.32 across all
five subsets. Compared to PCHGCN, a high-order graph-
based method, our approach reduces ADE by 9.1% and FDE
by 13.5%. Moreover, our method consistently ranks among
the top performers on each individual subset, demonstrating
strong generalization across diverse crowd scenarios. For
NBA datasets shown in Table 2, our model ranks first at 1.0s,
2.0s, and 3.0s, and achieves the lowest ADE and second-
best FDE at 4.0s, highlighting its robustness in modeling
long-term multi-agent interactions in dynamic sports envi-
ronments. Table 3 presents the results on the SDD dataset.
Our method achieves the best ADE and a competitive FDE
compared to existing approaches, confirming its effectiveness
in forecasting pedestrian trajectories in real-world scenes.

Ablation Study and Analysis

Effect of Expert. We conduct ablation studies to assess the
impact of different configurations of Expert Router (Table 4).
Removing both experts results in a clear performance drop,
confirming the necessity of incorporating expert mechanisms
into the model. When comparing single-expert settings, the
one-hop expert yields better results than the high-order coun-
terpart, indicating that certain interaction structures are more
informative for prediction. Most notably, our adaptive MoE
outperforms both individual experts and the fixed mixed con-
figuration, demonstrating that dynamic, input-dependent ex-
pert selection offers clear advantages over static alternatives.
These findings validate the effectiveness of context-aware
expert routing in modeling diverse trajectory patterns.

Effect of Virtual Nodes. To assess the effectiveness of
the Virtual Graph, we compare our model with conven-
tional multi-layer GCNs. As shown in Table 6, our approach
achieves the best performance with the fewest parameters
(1.00x), outperforming both 2-layer and 4-layer GCNs. No-
tably, simply increasing GCN depth does not yield better
results—the 4-layer model even slightly underperforms the

Expert Configuration | ETH/UCY Dataset

‘ min ADE20 min FDEQO
One-hop Expert Only 0.22 0.34
High-order Expert Only 0.23 0.36
Mixed Expert 0.25 0.36
No Expert 0.25 0.38
Ours \ 0.20 0.32

Table 4: Ablation study of expert selection evaluated by
min ADEsg/min FDEsg on ETH/UCY dataset. Bold and
underline indicate the best and second-best results.

Method | #Param. MACs
PECNet 2.1M 259.2M
STAR 1.0M 12.0G
MemoNet 10.7M 6.0G
GroupNet 2.2M 411.5M
MID 9.0M 40.3G
EqMotion 3.0M 147.1M
LED 10.9M 15.0G
MART 1.5M 43.3M
Ours 1.0M 23.1M

Table 5: Model complexity comparison. Bold and underline
indicate the best and second-best results.

2-layer variant, despite having more parameters. This sug-
gests that stacking layers is neither efficient nor sufficient
for capturing high-order interactions. In contrast, our use of
virtual nodes offers a more effective and parameter-efficient
solution for modeling such interactions.

Efficiency Comparisons. Table 5 compares model com-
plexity in terms of parameters and Multiply—Accumulate
Operations (MACs). Following the evaluation protocol of
(Lee et al. 2024), we compute MACs using scenes with 10
agents from the ETH/UCY dataset. Our method achieves the
lowest computational complexity (23.1M MACs) and the
smallest parameter count (1.0M) among all baselines. These
results highlight the efficiency of our model and its suitability
for real-world deployment.

Qualitative Results

Visualization of Predicted Trajectory. Figure 4 shows
qualitative comparisons on the ETH/UCY dataset among
EigenTraj, MART, and our model. Our predictions (green)
align more closely with ground-truth trajectories (red), cap-
turing pedestrians’ subtle movements and social interactions
more accurately. Figure 5 presents trajectory predictions on
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Figure 4: Qualitative results on ETH/UCY datasets. Historical trajectories are in blue, ground-truth trajectories are in red, and

predicted trajectories are in green.

LED MART Ours

Figure 5: Qualitative results on NBA datasets. Historical
trajectories are in blue, ground-truth trajectories are in red,
and predicted trajectories are in green.

Variant | ETH/UCY Dataset

| min ADE20 min FDE20 Param. Ratio
GCN (2-layer) 0.22 0.36 0.97x
GCN (4-layer) 0.23 0.36 1.11x
Ours | 0.20 0.32 1.00x

Table 6: Ablation study on virtual graph effectiveness evalu-
ated by min ADEsp/min FDE9g on ETH/UCY dataset. Bold
and underline indicate the best and second-best results.

the NBA dataset comparing LED, MART, and our approach.
Our method consistently generates smoother and more pre-
cise trajectories, effectively capturing complex dynamics and
long-term interactions among multiple agents. These visual
results further confirm our model’s superior predictive capa-
bility across diverse scenarios.

Expert Weight Analysis. Figure 6 illustrates the learned
expert weights for different trajectory scenarios. The results
indicate that the one-hop expert generally receives higher
weights in simpler interactions. Conversely, the high-order
expert dominates in more complex, globally interactive sce-
narios. This adaptive expert weighting confirms the effec-

|:| One-hop Expert |:| High-order Expert

e el e b

Expert Weight

Expert Weight

Figure 6: Visualization of learned expert weights across dif-
ferent scenarios. The model dynamically adjusts one-hop and
high-order expert contributions by interaction complexity.

tiveness of our model in dynamically balancing the usage of
one-hop expert and high-order expert.

Conclusion

We propose ViTE, a novel trajectory prediction framework
combining Virtual Graph for high-order interactions and Ex-
pert Router for adaptive expert routing. This design balances
multi-scale reasoning and computational efficiency. Experi-
ments on ETH/UCY, NBA, and SDD confirm state-of-the-art
performance. Future work will incorporate contextual image
information to further enhance scene understanding. Inte-
grating visual semantics such as obstacles, road structure,
or group behavior cues could provide stronger priors for
trajectory prediction. We also aim to explore more flexible
expert architectures that dynamically adjust their granularity
or number based on scene complexity.
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