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Fig. 1. Our approach is capable of producing interactive in-between motions (light blue and pink characters) for multiple keyposes (blue and red characters)
while maintaining high quality over long transitions.

Motion in-betweening is the problem to synthesize movement between key-
poses. Traditional research focused primarily on single characters. Extending
them to densely interacting characters is highly challenging, as it demands
precise spatial-temporal correspondence between the characters to main-
tain the interaction, while creating natural transitions towards predefined
keyposes. In this research, we present a method for long-horizon interaction
in-betweening that enables two characters to engage and respond to one
another naturally. To effectively represent and synthesize interactions, we
propose a novel solution called Cross-Space In-Betweening, which models
the interactions of each character across different conditioning representa-
tion spaces. We further observe that the significantly increased constraints
in interacting characters heavily limit the solution space, leading to degraded
motion quality and diminished interaction over time. To enable long-horizon
synthesis, we present two solutions to maintain long-term interaction and
motion quality, thereby keeping synthesis in the stable region of the so-
lution space. We first sustain interaction quality by identifying periodic
interaction patterns through adversarial learning. We further maintain the
motion quality by learning to refine the drifted latent space and prevent pose
error accumulation. We demonstrate that our approach produces realistic,
controllable, and long-horizon in-between motions of two characters with
dynamic boxing and dancing actions across multiple keyposes, supported
by extensive quantitative evaluations and user studies.

CCS Concepts: • Computing methodologies → Motion capture; Neural
networks.
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1 INTRODUCTION
Motion in-betweening involves synthesizing realistic charactermove-
ment between predefined keyposes. It enables animators to effi-
ciently create controllable motions by specifying only keyposes.
Prior studies [Chai and Qin 2024; Chu and Yang 2024; Harvey and
Pal 2018; Harvey et al. 2020; Hong et al. 2024; Oreshkin et al. 2023;
Qin et al. 2022; Studer et al. 2024; Tang et al. 2022] have explored var-
ious architectures for the motion in-betweening task, under diverse
conditioning schemes such as text [Cohan et al. 2024; Pinyoanun-
tapong et al. 2024], style [Tang et al. 2023], skeletal topology [Gat
et al. 2025; Yun et al. 2025] and keyframe timing [Goel et al. 2025;
Starke et al. 2023]. Despite extensive research, existing methods
primarily focus on motion in-betweening for a single character,
and it is non-trivial to extend these methods to multiple densely
interacting characters.

Dense interactions such as boxing or dancing are characterized by
precise movements as well as precise timing. Extending interaction
synthesis to in-betweening requires generation to fulfill three con-
straints: (1) The two-character motion should be spatio-temporally
aligned such that it’s semantically interactive. (2) The two-character
motion should end at the predefined keypose at the same time.
(3) In-betweening should generalize to user-customized keypose
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which typically lies outside the spatio-temporal distribution learned
from dataset. These precise requirements introduce significantly
more constraints to the solution space than single-character in-
betweening.

Fundamentally, the core challenge of interaction in-betweening is
two-fold. First, it requires explicitly modeling interactions to capture
precise movement and timing that define the interaction, while dy-
namically satisfying keyposes for each character. Second, enforcing
dense interaction introduces a substantial number of constraints.
To fulfill them would easily lead to unnatural motion and cause
keyposes unreachable. This degradation compounds over time, ulti-
mately making long-horizon interaction synthesis infeasible.

In this paper, we present a novel solution for long-horizon, densely
interacting in-betweening that enables two characters to engage
and respond to one another naturally. To represent interaction ef-
fectively, we introduce Cross-Space In-Betweening to model and
synthesize reactive in-between motions for two characters. Our
approach first represents motions as spatial offsets relative to key-
poses and synthesizes transitions for each character individually.
The transitions are then transformed relative to the other character,
with interaction conditions integrated via an affine transformation
learned by Feature-wise LinearModulation (FiLM) [Perez et al. 2018].
This two-stage synthesis ensures stable, responsive motion transi-
tions conditioned on the relative positions to both the keyposes and
the counterpart character.
To address the challenge of overly restrictive constraints in this

task, we present two solutions that help to preserve interaction
consistency and motion quality over time, enabling long-horizon
interaction in-betweening. We first sustain interaction quality by
identifying periodic interaction patterns through adversarial learn-
ing, which distinguishes real temporal structures from synthetic,
inconsistent interactions. This design is inspired by the observation
that dense interactions like boxing and dancing often follow peri-
odic and repetitive spatial distance. Second, we maintain individual
motion quality by sampling from a refined latent space during infer-
ence—a simple yet effective strategy to mitigate error accumulation
and distribution drift common in auto-regressive methods. Together,
these two strategies foster a robust latent space informed by inter-
action periodicity and individual motion correction, supporting our
goal of high-quality long-horizon synthesis.

We showcase long-horizon interaction in-betweening across the
Boxing [Shum et al. 2010], ReMoCap [Ghosh et al. 2025] and Inter-
Human [Liang et al. 2024] datasets. Our system enables users to
interactively select, translate, and rotate keyposes for two charac-
ters, with valid interactions automatically generated in response
(see Fig.10). Ablation studies, quantitative evaluations, and user
studies demonstrate that our method outperforms prior work on
interaction in-betweening.
The main contributions of this work can be summarized as:

• We propose Cross-Space In-betweening that enables stable
and responsive interaction modeling for two-character mo-
tion in-betweening.

• We maintain long-term interaction quality by identifying
periodic interaction patterns through adversarial learning.

• We preserve long-term motion quality by learning to refine
the drifted latent space and prevent pose error accumulation.

• We demonstrate that our system is robust to produce respon-
sive in-between interactions for user-defined keyposes.

2 RELATED WORKS

2.1 Multi-Character Interaction Synthesis
Modeling interactions between virtual characters has been widely
explored in computer graphics and vision. Early works relied on
handcrafted patches or probabilistic models to capture interaction
dynamics [Ho and Komura 2009; Kwon et al. 2008; Park et al. 2004;
Shen et al. 2019; Shum et al. 2008; Yun et al. 2012], but lacked flexibil-
ity and scalability. Deep neural networks have become the dominant
paradigm in recent years. A number of works focus on predicting
the short-term future of interacting characters [Chopin et al. 2023;
Guo et al. 2022; Katircioglu et al. 2021; Tanke et al. 2023]. These
methods typically extrapolate trajectories from recent motion his-
tory. However, their scope is limited to short temporal horizons,
and they generally lack mechanisms for conditional generation.
Another line of work generates the motion of one character con-
ditioned on the observed trajectory of another. Recent approaches
[Cen et al. 2025; Ghosh et al. 2025; Xu et al. 2024] demonstrate re-
active motion synthesis that align with the given input character’s
ground-truth motion. However, this setting requires complete obser-
vation of motion as input, which makes it unsuitable for interaction
in-betweening, where only sparse keyposes are available and both
characters must be synthesized jointly.
Recently, diffusion-based models have shown promising results

in multi-character generation [Liang et al. 2024; Shafir et al. 2023;
Tanaka and Fujiwara 2023; Xu et al. 2023, 2024]. These approaches
typically employ text prompts or action labels as control signals,
which provides flexibility for generating diverse interaction scenar-
ios. However, such high-level conditions do not allow precise control
over the spatial-temporal details of the desired interaction. [Zhang
et al. 2023] demonstrated interaction synthesis conditioned on char-
acter morphology (e.g., body height), and [Cen et al. 2025] generated
reactions based on sparse joint positions, but neither method allows
explicit control over the exact spatial-temporal interaction between
characters. To bridge this gap, we propose a framework that allows
two characters to perform natural interactions with guaranteed
alignment to user-specified keyposes.

2.2 Motion In-betweening
Motion in-betweening has been extensively explored for single-
character animation, ranging from early space-time optimization
and probabilistic models [Lehrmann et al. 2014; Ngo andMarks 1993;
Rose et al. 1996; Wang et al. 2007; Witkin and Kass 1988] to recent
deep learning approaches using recurrent neural networks [Harvey
and Pal 2018; Harvey et al. 2020], Transformers [Chai and Qin 2024;
Kim et al. 2022; Oreshkin et al. 2023], mixture-of-experts [Starke
et al. 2023; Tang et al. 2022, 2023], and diffusion models [Cohan
et al. 2024; Studer et al. 2024]. These methods achieve strong results
for smooth, controllable single-character transitions under diverse
conditioning schemes.
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Fig. 2. An overview of our framework. The system first generates an initial prediction for individual character which minimizes the distance to keypose.
Then, it extracts relative pose representations as conditions to refine the initial prediction and generates interactive motions. Pairwise joint distances and the
outcomes of main network are fed into an interaction discriminator and a motion refiner to model interaction periodicity and to reduce pose error, respectively.

However, directly extending these approaches to two characters
is non-trivial. Beyond matching individual keyposes, two-character
in-betweening must explicitly model spatial relationships and tim-
ing alignment to maintain realistic interactions. Moreover, motion
errors compound more rapidly in multi-character settings, where
small deviations in one character can destabilize the interaction
dynamics. Our method directly addresses these challenges by condi-
tioningmotion generation on cross-character spatial representations
to preserve interaction fidelity and incorporating two solutions to
maintain stable generation.

3 PROBLEM DEFINITION
Our system is designed to auto-regressively predict future motion se-
quences for both characters based on an input observation sequence.
Specifically, the poses of both character𝑚1,𝑚2 ∈ R𝐽 ×𝐶 are repre-
sented by 𝐽 joints and𝐶 dimensions that capture joint positions and
rotations. Given a motion datasetM, we define the motion sequence
of two characters starting at frame 𝑡 and spanning 𝑇 = 20 frames
as𝑀𝑡 :𝑡+𝑇 = {(𝑚𝑡

1,𝑚
𝑡
2), (𝑚

𝑡+1
1 ,𝑚𝑡+1

2 ), . . . , (𝑚𝑡+𝑇
1 ,𝑚𝑡+𝑇

2 )} , which we
denote as𝑀𝑡 for simplicity. For each step of prediction, our frame-
work predicts the short sequence of motion in the next 𝑙 = 10 frame
based on past observation: 𝑀𝑡+𝑙 = 𝑓 (𝑀𝑡 ). During inference, the
in-between motion sequence is predicted in auto-regressive fashion
until reaching the keypose.

4 METHODOLOGY

4.1 Cross-Space In-betweening
It is challenging to predict in-between motions in a two-character
scenario, as the transitions pursue natural movements towards key-
poses and simultaneously maintain high interaction quality. Thus,
our approach strategically decomposes the problem into two key
stages: individual in-betweening and interaction modeling.

In the first stage, individual motions are firstly represented in the
coordinate space relative to the keypose (𝑀𝑡 ) to obtain the spatial
offset following the representation in [Starke et al. 2023]. An initial
in-betweening prediction (𝑀̂𝑡+𝑙 ) is then generated by minimizing
the distance to the keypose. In the second stage, the motion is then
transformed into the coordinate space of its counterpart to obtain

their relative spatial information (𝑀̂𝑡+𝑙
rel ) and to generate the final

motion sequence (𝑀𝑡+𝑙 ). The architecture is shown in Fig. 2.

4.1.1 Individual In-Betweening. Specifically, we convert the input
motion into frequencies using Discrete Cosine Transform (DCT) to
effectively capture the temporal body dynamics and reduce mod-
eling complexity. An encoder (denoted as Enc), composed of 1D
convolutional layers followed by a Graph Convolutional Network
(GCN) [Kipf and Welling 2016] to capture the spatial dependen-
cies among the joints, is then employed to predict the in-between
motions for a single character. This step is formulated as:

𝑀̂𝑡+𝑙 = 𝐸𝑛𝑐 (𝐷𝐶𝑇 (𝑀𝑡 )) . (1)

4.1.2 Interaction Modeling. In this stage, we convert the initial
coarse prediction (𝑀̂𝑡+𝑙 ) to the root space of the other character to
obtain a new representation (𝑀̂𝑡+𝑙

rel ). These features indicate relative
joints positions and rotations between the characters.

𝑀̂𝑡+𝑙
rel = T (𝑀̂𝑡+𝑙 ), (2)

where T denotes the spatial transformation applied to the motion
representation to extract relative pose information.
Learning dependencies between motion features represented in

different coordinate spaces is challenging due to they have signif-
icantly different distributions. We thus incorporate Feature-wise
Linear Modulation (FiLM) layers [Perez et al. 2018] to adaptively
bridge this feature gap. FiLM enables the network to modulate mo-
tion features through learnable affine transformations, conditioning
each character’s motion on spatial cues derived from its counter-
part. This design is inspired by prior works in style conditioning
[Mason et al. 2022; Tang et al. 2023], where FiLM is used for feature
modulation for different styles.
Specifically, we first project the relative-space motion features

𝑀̂𝑡+𝑙
rel into a normally distributed latent space to regularize the in-

teraction representation and stabilize FiLM conditioning [Kingma
2013]. Then, a FiLM layer is trained to condition the original keypose-
space motions on the relative spatial information by modulating
the motion features through learned affine parameters. This process
enables the model to align feature distributions across coordinate
spaces while preserving interaction relevance. The process can be
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formulated as:

𝑧 = 𝜇 (𝑀̂𝑡+𝑙
rel ) + 𝜖 · 𝜎 (𝑀̂𝑡+𝑙

rel ), 𝛾, 𝛽 = 𝐹𝑖𝐿𝑀 (𝑧), (3)

where 𝜇, 𝜎 and 𝑧 are mean, log variance and re-parameterized latent
variable following normal distribution, respectively. 𝛾 and 𝛽 are
learnable scale and shift parameters for motion feature modulation.
The FiLM layer integrates spatial conditions into the interac-

tion modeling process by adaptively modulating the motion fea-
tures. This modulation yields intermediate features, denoted as
𝑀̂𝑡+𝑙
mod, which is embedded with relative spatial information between

characters. Subsequently, the decoder (𝐷𝑒𝑐)—which shares the en-
coder’s architecture—reconstructs the complete in-between motion
sequence based on 𝑀̂𝑡+𝑙

mod, followed by Inverse Discrete Cosine Trans-
form (IDCT) to recover the final motion frames in the original pose
space:

𝑀̂𝑡+𝑙
mod = 𝑀̂𝑡+𝑙 · 𝛾 + 𝛽, 𝑀𝑡+𝑙 = 𝐼𝐷𝐶𝑇 (𝐷𝑒𝑐 (𝑀̂𝑡+𝑙

mod)). (4)

4.1.3 Training. During training, the outputs are fed back into the
network as inputs in auto-regressive manner to enable sequential
generation, with scheduled sampling [Bengio et al. 2015] adopted
to further improve model robustness. The network is optimized
through minimizing mean squared error Lmse between prediction
𝑀𝑡+𝑙 and ground truth𝑀𝑡+𝑙

gt , as well as a KL divergence loss Lkl:

Lmse =
1
𝑃

𝑃∑︁
(𝑀𝑡+𝑙 −𝑀𝑡+𝑙

gt )2, (5)

Lkl = −0.5 ·
(
1 + 𝜎 − 𝜇2 − 𝑒𝜎

)
, (6)

where 𝑃 = 3 denotes the number of auto-regressive prediction
steps performed during training. The overall loss function for the
Cross-Space In-betweening module is:

Linbetween = 𝜆mseLmse + 𝜆klLkl . (7)

Here, 𝜆mse, and 𝜆kl are the corresponding weights that balance
different losses.

4.2 Long-horizon Quality
We aim to generate interactive in-between motions that can extend
over long horizon. However, the interaction in-betweening task
introduces a substantial number of constraints. These constraints
can distort the structure of the learned latent space where valid tra-
jectories become sparse and nonlinear. Inference-time distribution
quickly drifts from the training one and pose error (e.g., deformed
bones in Fig. 15) accumulates after a few prediction steps. Such
disruptions in one character’s motion propagate abnormal features
into the interaction modeling process, causing the network to gen-
erate diminished or overly smoothed interactions. (e.g., drifting to
keypose without interactive motion, see Fig. 14). To address this
challenge, we design two modules modeling interaction periodicity
and enhancing motion quality, respectively, which helps to foster
a robust latent space at both the interaction and single-character
levels to enhance robustness of long-horizon synthesis.

Fig. 3. Details of the interaction periodicity modeling. We first extract the
pairwise joint distances D𝑡 from generated motions (green lines between
pairs of joints). We then use Periodic Autoencoder to encode the dynamics as
periodic latent frequencies ℎ𝑡 , illustrated as three principal components in
the middle via principal component analysis. Our discriminator then learns
to identify the interactions from periodic patterns between characters.

4.2.1 Interaction Periodicity. Motivated by the observation that
interactions like boxing and dancing exhibit inherent periodic pat-
terns, we leveraged this property to enhance interaction quality and
synchronization when generating in-betweening movements.
Previous methods have modeled the periodic patterns of single

character with the phase feature [Starke et al. 2023, 2022; Tang
et al. 2023], which enhance spatial-temporal alignment in the latent
space in predicting subsequent poses. Similarly, we adopt Periodic
Autoencoder (PAE) [Starke et al. 2022] to learn the phase feature
and generalize it to two characters to capture recurrent patterns in
interactive actions by encoding their relative dynamics as periodic
frequencies. A discriminator is then deployed to evaluate the inter-
action quality of predicted motion sequences based on the learned
periodicity. The procedure is shown in Fig. 3.
In two-character interactions, periodicity often emerges in the

relational patterns between characters, rather than in the motions of
each character independently. For example, repeated patterns occur
as the punch approaches with decreasing distance between the char-
acters, and then retracts with increasing distance. We thus model
the interaction periodicity using pairwise joint distance (PJD) [Tang
et al. 2008], which represents the geometry relationship between
two characters. Here, we encode PJD dynamics as latent frequencies
to represent the periodic patterns. In particular, PJD is formulated
as the per-frame offset of Euclidean distance of pairwise joints:

𝑑𝑡 = {∥𝑥𝑡𝑖 − 𝑦𝑡𝑗 ∥
2
2 − ∥𝑥𝑡−1𝑖 − 𝑦𝑡−1𝑗 ∥22 | 𝑖, 𝑗 ∈ 𝐽 }, (8)

D𝑡 = (𝑑𝑡 , 𝑑𝑡+1, . . . , 𝑑𝑡+𝑁 ) ∈ R𝐽 ×𝑁 , (9)
where 𝑥𝑡

𝑖
,𝑦𝑡
𝑖
∈ R3 denote the joint positions of two characters in the

world space at time step 𝑡 , 𝑑𝑡 is the PJD at time 𝑡 for all joints, and
D𝑡 is PJD dynamics of length 𝑁 starting at time 𝑡 .
The latent frequencies representation ℎ𝑡 ∈ R𝑁×𝐶𝜙 is parameter-

ized by sinusoidal functions:

ℎ𝑡 = 𝑃𝐴𝐸 (D𝑡 ) = 𝑎𝑡𝑠𝑖𝑛(2𝜋 (𝑓 𝑡 + 𝜙𝑡 )) + 𝑏𝑡 , (10)

where 𝜙𝑡 is the phase vector predicted by a fully connected layer,
and 𝑓 𝑡 , 𝑎𝑡 , 𝑏𝑡 are the frequency, amplitude, and bias vector through
Fast Fourier Transform (FFT) that models the cyclical dynamics of
PJD between two characters. Phase channel 𝐶𝜙 is set to be 15.
To further increase the interaction realism, we train the main

network (i.e., Cross-Space In-betweening) adversarially that learns
to differentiate between realistic and unrealistic interactive patterns
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Fig. 4. Qualitative results on ReMoCap and InterHuman dataset. Our method produces smooth and seamless turning motions (light blue and pink) in between
keyposes (blue and red).

through the latent frequencies ℎ𝑡 . While the main network auto-
regressively generates short-term motions, the discriminator offers
global supervision by evaluating the periodic quality of the longer
predictions (i.e., 𝑁 = 30 in Equation 9). By identifying sampled
sequences that could lead to erroneous interactions, it facilitates the
generation of more realistic interactive motion patterns.
The adversarial loss Ladv is defined as:

Ladv = E
𝑀𝑡+𝑙 :𝑡+𝑙+𝑁

gt ∼M [log𝐷 (𝑀𝑡+𝑙 :𝑡+𝑙+𝑁
gt )]+

E𝑀𝑡 :𝑡+𝑁 ∼𝑝𝐺 [log(1 − 𝐷 (𝐺 (𝑀𝑡 :𝑡+𝑁 )))]
(11)

where 𝐷 , 𝐺 are the discriminator and generator (i.e., Cross-Space
In-betweening), M is the ground truth dataset and 𝑝𝐺 denotes the
distribution of motion sequences generated by the generator 𝐺 .

4.2.2 Motion Quality. Given that individual pose error will disrupt
interaction consistency, we introduce a Motion Refiner to mitigate
error accumulation and address motion degradation at the single-
character level. It learns to adjust the latent space derived from
the drifted distribution generated by Cross-Space In-betweening
and correct the deviations during inference so as to avoid sampling
erroneous motions.
Specifically, the input to this module is the motion clip 𝑀𝑡+𝑙

predicted by the main network, which may contain minor pose error
(e.g. invalid joint rotations in Fig. 15). Similar to Cross-Space In-
betweening, the module consists of an auto-encoder and a GCN for
spatial-temporal feature extraction and reconstruction. It preserves
the high-level motion semantics of the input while refining joint-
level features. The refined output is denoted as𝑀𝑡+𝑙

refine. Empirically,
we refine motion in non-overlapping segments of 10 frames that is
sufficient for real-time inference while preserving motion variability.

During inference, theMotion Refiner is integrated into the pipeline
to correct motion predictions step-by-step. This reduces the risk of
accumulating pose errors or drifting into unrealistic latent spaces,
and helps reshape the latent space to align with valid motion fea-
tures. In doing so, the refiner preserves long-term motion quality
by avoiding dependence on the degraded distribution produced by
the main network. Note that the whole generation system is trained
end-to-end, with the Motion Refiner updated independently:

𝑀𝑡+𝑙
refine = 𝑅𝑒 𝑓 𝑖𝑛𝑒𝑟 (𝑀𝑡+𝑙 ) (12)

Lrefine =
1
𝑃

𝑃∑︁
(𝑀𝑡+𝑙

refine −𝑀𝑡+𝑙
gt )2 . (13)

5 EXPERIMENT

5.1 Implementation Details
Simulation. Our rendering system is implemented on top of an

open-source motion animation framework [Starke et al. 2020] de-
veloped in Unity3D. We do not adopt physics-based simulation as it
introduces significant training overhead and requires extensive fine-
tuning of torque and action smoothness [Liao et al. 2025], which are
not essential for demonstrating interactive motions in our setting.

Pose Representation. To achieve efficient rendering, our system
avoids using forward kinematics for joint position computation.
Instead, each joint is represented independently in Cartesian 3D
space, following [Starke et al. 2020]. Each character consists of
𝐽 = 52 joints and𝐶 = 9 dimensions (3 for position and 6 for rotation)
in total. Joint rotation is defined as a pair of forward and upward
Cartesian vectors to avoid ambiguous rotations [Zhang et al. 2018].

Datasets. We trained our model using a Boxing dataset as well as
two public dancing motion datasets: ReMoCap [Ghosh et al. 2025]
and InterHuman [Liang et al. 2024]. Models are trained separately
for each dataset. The Boxing dataset is simulated and collected from
a previous motion animation system [Shum et al. 2010], resulting
in a total of 23,889 frames of intense boxing actions (e.g., punching,
kicking and dodging). For the ReMoCap and InterHuman datasets,
we specifically select Lindy Hop and Latin dance sequences con-
taining at least 500 frames and discard segments that lack clear
interactions. This result in 39,557 and 18,224 total frames, respec-
tively. All datasets are re-targeted to Mixamo character [Mixamo
2025] using Autodesk Motion Builder [Autodesk 2025] and aug-
mented by mirroring along the X-axis. The dataset is divided into
90% for training, 5% for validation, and 5% for testing.

Keyframe Sampling. Each training sample consists of 50 frames:
the first 20 are used as reference input, and the remaining 30 for
auto-regressive prediction. During preprocessing, a keyframe is
randomly selected between frames 50 and 70 (relative to the first
frame). All 50 frames in the sample are then transformed into the
coordinate space of this keyframe. This approach ensures that the
sampled keyframes cover both nearby and distant positions.

5
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Fig. 5. Qualitative results compared with baseline methods. Cross-
Interaction Attention exhibits severe pose error accumulation issue.

Fig. 6. Keypose alignment performance compared with CondMDI.

Training. We conduct our experiments with an NVIDIA RTX 3080
graphics card, an AMD Ryzen 9 5900X CPU and 32G memory. We
train all modules using Adam Optimiser [Kingma and Ba 2014] with
a learning rate 𝛼 = 0.0001, 𝛽1 = 0.9, and 𝛽2 = 0.999. Network is
trained for 100 epochs and cost 40 to 50 hours for each dataset. The
motion in-betweening runtime system is adapted from the open-
source Unity3D motion animation system [Starke et al. 2020].

5.2 Comparison Methods
We aim to evaluate performance of the two objectives in our task,
i.e., interaction synthesis and motion in-betweening, which were
addressed separately in previous works. As there is no prior open-
source work specifically targeting interaction in-betweening for
direct comparison, we evaluate our system against the following
representative baselines:

• Phase Betweener [Starke et al. 2023], a single-character in-
betweening method with periodicity modeling. To evaluate
its generalizability in a two-character setting, we input each
character’s motion data either separately or concatenated,
referred to as ‘separate’ and ‘combined’ in the following sec-
tion.

• Cross-InteractionAttention [Guo et al. 2022], a cross attention-
based interaction synthesis method with explicit interaction
modeling.

• CondMDI [Cohan et al. 2024], a diffusion-based single-character
in-betweening framework.

Modification details for these baselines can be found in supplemen-
tary materials.

5.3 Qualitative Results
Interaction In-betweening. Our network is able to generate in-

between motions in real time until the averaged distance between

each character and its corresponding keypose falls below a prede-
fined threshold. The inference time is 125 ms per 10 frames. Quali-
tative results for Boxing, ReMoCap and InterHuman dataset can be
found in Fig. 1, 11, 12 and the supplementary video. Comparisons
with baselines are shown in Fig. 5. For Phase Betweener, neither of
training approaches yields realistic interactions, as the network fails
to implicitly capture the complex relationships between characters.
Cross-Interaction Attention also fails to generate interactive in-
between motions and suffers from severe error accumulation, as it
relies heavily on historical motions for synthesis and struggles with
long-term prediction. Moreover, CondMDI struggles with keypose
alignment (see Fig. 6). Since it generates entire motion sequences
in an offline manner, we loosen the keypose activation threshold
in our real-time system to maintain continuity. This adjustment
ensures smooth rendering but reduces alignment accuracy.

Controllability. The keyposes are controllable by users.We demon-
strate its generalizability on different keyposes when provided with
the same initial motion (See Fig. 10 and ’Controllability’ in sup-
plementary video). Through customizing the root positions and
rotations of the keyposes or sampling poses from database, our sys-
tem is robust to produce responsive in-between interactive motion
sequences in real time.

Diversity. There are multiple possible transitions that can occur
between keyframes. To demonstrate the prediction diversity, we
generate three in-between motions for the same keypose condition,
as shown in Fig. 7. Our network is capable of generating varied
in-between motions while maintaining realistic interactions.

5.4 Quantitative Results
Reconstruction Quality. To evaluate the reconstruction precision,

we follow [Harvey et al. 2020] to report the average L2 norm of
positions (L2P) and the average L2 norm of quaternions (L2Q) be-
tween the ground truth and the generated in-between motions in
world coordinate, covering different lengths of in-betweening in
short term (refer to Table 1). Our method demonstrates comparable
performance across all three datasets and achieves superior recon-
struction quality compared to baselines. Further results of long-term
reconstruction error are provided in supplementary document.

Interaction Quality. Inspired by [Wang et al. 2022], we evaluate
the quality of interactions based on the classification results of the
discriminator. Note that the discriminator used for evaluation is
trained independently on each of the three datasets using fake sam-
ples generated by a different network than the one being tested, so
that to ensure an unbiased and effective assessment. Our method
outperforms the comparison baselines in terms of interaction qual-
ity. It also proves the effectiveness of using the PJD dynamics to
represent and assess the interaction quality for periodic motions.

Long-horizon Quality. To assess prediction quality in long hori-
zon, in Table 1, we also report the latent distribution differences
with ground truth using Frechet Inception Distance (FID) and Nor-
malized Power Spectrum Similarity (NPSS) [Harvey et al. 2020]. Our
method shows robust performance in long transitions, but without
the Motion Refiner it can produce highly unrealistic motions (as
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Table 1. Quantitative results compared with previous methods and ablated versions. All comparison methods and ablated networks are trained on Boxing
dataset only.

L2P↓ L2Q↓ Foot↓ Interaction↑ Diversity↑ FID↓ 100×NPSS↓
Frames 30 50 30 50 50 40 60 80 30 50 100 150 200 100 150 200

Boxing Dataset
Ours 0.192 0.208 0.254 0.279 0.342 0.914 0.911 0.905 1.104 1.802 0.282 0.287 0.289 1.398 1.430 1.531
w/o interaction modeling 0.243 0.253 0.291 0.307 0.336 0.864 0.862 0.862 1.112 1.831 0.428 0.436 0.439 1.837 2.020 2.348
w/o Inter. GAN 0.191 0.202 0.248 0.266 0.340 0.904 0.902 0.899 1.090 1.787 0.504 0.529 0.556 2.016 2.306 2.551
w/o Motion Refiner 0.235 0.251 0.288 0.301 0.345 0.908 0.901 0.894 1.102 1.788 0.696 0.722 0.730 2.197 2.528 2.814

Phase Betweener (separate) 0.211 0.214 0.257 0.263 0.345 0.866 0.863 0.859 1.089 1.670 0.519 0.534 0.565 2.119 2.304 2.663
Phase Betweener (combined) 0.202 0.210 0.250 0.259 0.350 0.880 0.877 0.872 0.278 0.281 0.547 0.559 0.570 2.849 3.105 3.397
Cross-Interaction 0.217 0.218 0.267 0.272 0.474 0.882 0.875 0.871 0.314 0.317 0.482 0.493 0.502 2.147 2.335 2.590
CondMDI 0.212 0.217 0.263 0.266 0.452 0.905 0.902 0.900 0.293 0.306 0.478 0.484 0.496 1.833 1.940 2.056

Dancing Datasets
Ours (ReMoCap Dataset) 0.205 0.220 0.264 0.278 0.363 0.908 0.907 0.907 0.974 1.077 0.306 0.310 0.312 1.448 1.562 1.793
Ours (InterHuman Dataset) 0.201 0.212 0.249 0.259 0.335 0.901 0.899 0.898 0.965 1.012 0.289 0.295 0.307 1.407 1.494 1.586

Fig. 7. Qualitative results on predictions diversity. We illustrate historical
trajectories in distinct colors for each of the three predictions.

reflected in the FID metric). For NPSS, Phase Betweener (combined)
performs the worst in long-horizon synthesis, likely due to the sub-
stantially increased complexity of learning a two-character state
space with limited capacity of fully-connected layers.

Diversity. We also report the diversity of predictions by measur-
ing the joint positional difference between different samples given
the same input and keypose condition. Similar to [Tang et al. 2023],
we generate 10 samples for each keypose condition. Our system
achieves comparable performance to Phase Betweener. In contrast,
Cross-Interaction Attention tends to be deterministic, as its atten-
tion mechanism generates similar attention scores for the same
input.

Foot Sliding. Following [Zhang et al. 2018], we measure the foot
sliding artifact (refer to Foot in Table 1) by calculating the averaged
foot joint velocity 𝑣 𝑓 in the first 50 frames when foot height ℎ𝑓
is within threshold 𝐻 = 2.5𝑐𝑚: 𝑣 𝑓 · 𝑐𝑙𝑎𝑚𝑝 (2 − 2ℎ𝑓 /𝐻 , 0, 1). It is
worth noting that the training datasets inherently contain some foot
sliding artifacts. Following [Starke et al. 2020], we apply inverse
kinematics on the foot joints to mitigate this issue. Quantitative
results compared with ground truth are provided in supplementary
document.

User Study. We conduct a user study with 50 participants who
have no familiarity with motion in-betweening to assess the visual
quality of the generated demos. Each participant is asked to rate
the motion quality (on a scale of 1 to 10) for 4 demo cases (2 for
boxing dataset and 2 for dancing datasets) generated by different

methods, including ground truth. As shown in Fig. 8, our method
consistently outperforms the baselines and achieves visual quality
comparable to the ground-truth motions. CondMDI achieved higher
scores than the other baselines, which may be attributed to its
ability to generate fewer unrealistic interactions and produce more
continuous transitions across multiple keyposes. Detailed statistics
are included in the supplementary document.

Fig. 8. User study results presented as a box plot of ratings across different
methods. Our method achieves scores comparable to the ground truth and
surpasses all baseline approaches.

5.5 Ablation Studies
We conduct ablation studies on Boxing dataset to evaluate the effec-
tiveness of different components. To ensure fair comparisons and
consistent model complexity, the ablated versions are implemented
to have a similar number of parameters as the full model. Qualitative
results can be found in Fig. 9,14,13 and the supplementary video.

Cross-Space In-betweening. To evaluate the necessity of FiLM-
based interaction conditioning, we conduct an ablation (refer to w/o
interaction modeling) where each character’s motion is predicted
independently in its own keypose space without transforming to
the other’s coordinate system or applying FiLM modulation. Quan-
titative results indicate a 20% decline in reconstruction performance
when dense spatial-temporal relationships between characters are
not effectively captured.
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Fig. 9. Qualitative comparison on interaction modeling. On the right, both
characters exhibit significant penetration and unrealistic interactions.

Interaction Periodicity. We also test the interaction quality by
ablating the discriminator (refer to w/o Inter. GAN in the table).
We observe a minor improvement in short-term reconstruction
precision, likely because removing the discriminator allows the
network to focus directly on optimizing the reconstruction loss
without the additional constraint of satisfying the adversarial loss.
However, we also observe a slight decrease in interaction quality
and a significant decline in FID in long transitions. This reflects how
modeling the interaction periodicity help learn a robust latent space
and maintain long-horizon quality for in-betweening.

Motion Quality. With the Motion Refiner, our network effectively
maintain motion quality by reducing the pose errors in long-term
synthesis, as shown in Fig. 13 and supplementary video. This is also
evident from the lower discrepancy between latent distributions of
ground truth and predictions in FID scores.

6 CONCLUSION AND DISCUSSION
In this work, we introduce Cross-Space In-betweening, a novel
auto-regressive framework for synthesizing interactive in-between
motions. To address the challenges posed by strict keypose and
interaction constraints, we maintain interaction and motion quality
over long horizons, through modeling of interaction periodicity and
refining individual pose errors. Our system enables controllable,
long-horizon interaction in-betweening with dense character inter-
actions, and significantly outperforms existing methods across most
quantitative metrics.

Limitation. The first limitation of our work is that the motion
may not match well with the user-customized keyposes because
the imposed spatial constraints can be temporally misaligned (e.g.,
forcing two characters to punch simultaneously), and the model is
unable to infer interactions it has not seen before. Due to the nature
of online synthesis, without a global motion planning mechanism,
our system does not allow further offline refinement or adjustment
of the entire generated in-between sequence for better keypose
alignment.

Second, despite showcasing the potential of encoding the period-
icity of two-character motions for improving the interaction quality,
this strategy is primarily suited for interactions with clear repetitive
patterns and does not readily extend to aperiodic interactions (see
supplementary document).

Third, as the first work targeting interaction in-betweening, our
system currently does not support in-between timing condition as
it will further increase modeling complexity.
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Fig. 10. By manipulating the root translations and rotations of keyposes via the control panel (left), our system synthesizes interactive in-between motion
sequences that dynamically respond to the specified keypose configurations. Detailed animation results are provided in the supplementary video.

Fig. 11. Qualitative results on ReMoCap dataset. Light blue and pink characters are in-between motion. Blue and red characters are keyposes.

Fig. 12. Qualitative results on InterHuman dataset. Light blue and pink characters are in-between motion. Blue and red characters are keyposes.
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Fig. 13. Qualitative results without the Motion Refiner. The blue character exhibits hand joint deformation after a few seconds of prediction.

Fig. 14. Qualitative results without modeling interaction periodicity. The blue character is sliding to its keypose without interactive movement.

Fig. 15. Examples of deformed bones caused by long-term error accumulation.
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