Self-funded PhD Positions Available

Biomedical Engineering with Deep Learning based Video Analysis
Computer Vision with Deep Learning for Human Data Modelling
Deep Learning based Computer Graphics for Creating Virtual Characters

Image Editing based Data Augmentation for Illumination-insensitive Background Subtraction

Image Editing based Data Augmentation for Illumination-insensitive Background Subtraction

Abstract

A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. While the use of data augmentation has been shown to increase robustness, the modelling of realistic illumination changes remains less explored and is usually limited to global, static brightness adjustments. In this paper, we focus on tackling the problem of background subtraction using augmented training data, and propose an augmentation method which vastly improves the model’s performance under challenging illumination conditions. In particular, our framework consists of a local component that considers direct light/shadow and lighting angles, and a global component that considers the overall contrast, sharpness and color saturation of the image. It generates realistic, structured training data with different illumination conditions, enabling our deep learning system to be trained effectively for background subtraction even when significant illumination changes take place. We further propose a post-processing method that removes noise from the output binary map of segmentation, resulting in a cleaner, more accurate segmentation map that can generalise to multiple scenes of different conditions. Experimental results demonstrate that the proposed system outperforms existing work, with the highest F-measure score of 81.27% obtained by the full system. To facilitate the research in the field, we open the source code of this project at: https://github.com/dksakkos/illumination_augmentation

Publication

Dimitrios Sakkos, Edmond S. L. Ho, Hubert P. H. Shum and Garry Elvin,
"Image Editing based Data Augmentation for Illumination-insensitive Background Subtraction",
Journal of Enterprise Information Management (JEIM)
, 2020
Impact Factor: 1.310# Citation: 1##

# Impact factors from the Journal Citation Reports 2021
## Citation counts from Google Scholar as of 2022

Downloads

YouTube

References

BibTeX

@article{sakkos20image,
 author={Sakkos, Dimitrios and Ho, Edmond S. L. and Shum, Hubert P. H. and Elvin, Garry},
 journal={Journal of Enterprise Information Management},
 title={Image Editing based Data Augmentation for Illumination-insensitive Background Subtraction},
 year={2020},
 doi={10.1108/JEIM-02-2020-0042},
 issn={1741-0398},
 publisher={Emerald Publishing Limited},
}

RIS

TY  - JOUR
AU  - Sakkos, Dimitrios
AU  - Ho, Edmond S. L.
AU  - Shum, Hubert P. H.
AU  - Elvin, Garry
T2  - Journal of Enterprise Information Management
TI  - Image Editing based Data Augmentation for Illumination-insensitive Background Subtraction
PY  - 2020
DO  - 10.1108/JEIM-02-2020-0042
SN  - 1741-0398
PB  - Emerald Publishing Limited
ER  - 

Plain Text

Dimitrios Sakkos, Edmond S. L. Ho, Hubert P. H. Shum and Garry Elvin, "Image Editing based Data Augmentation for Illumination-insensitive Background Subtraction," Journal of Enterprise Information Management, Emerald Publishing Limited, 2020.

Similar Research

 

 
 

Last updated on 01 August 2022, RSS Feeds