Dr Lining Zhang

Northumbria University
Post-Doctoral Research Fellow (Co-supervised with )
, 2015 - 2017

Northumbria University
, UK
  • Research interests: Image Retrieval, Machine Learning
  • Funded by Dr Shum's 2014 EPSRC project.

Downloads


Grants Involved

The Engineering and Physical Sciences Research Council
Interaction-based Human Motion Analysis
EPSRC First Grant Scheme (Ref: EP/M002632/1): £123,819, Post-Doctoral Research Fellow (PI: Hubert P. H. Shum) ()
Received from The Engineering and Physical Sciences Research Council, UK, 2014-2016
Project Page

Publications with the Team

Multiview Discriminative Marginal Metric Learning for Makeup Face Verification
Multiview Discriminative Marginal Metric Learning for Makeup Face Verification Impact Factor: 5.5Top 25% Journal in Computer Science, Artificial IntelligenceCitation: 19#
Neurocomputing, 2019
Lining Zhang, Hubert P. H. Shum, Li Liu, Guodong Guo and Ling Shao
Webpage Cite This Plain Text
Lining Zhang, Hubert P. H. Shum, Li Liu, Guodong Guo and Ling Shao, "Multiview Discriminative Marginal Metric Learning for Makeup Face Verification," Neurocomputing, vol. 333, pp. 339-350, Elsevier, 2019.
Bibtex
@article{zhang19multiview,
 author={Zhang, Lining and Shum, Hubert P. H. and Liu, Li and Guo, Guodong and Shao, Ling},
 journal={Neurocomputing},
 title={Multiview Discriminative Marginal Metric Learning for Makeup Face Verification},
 year={2019},
 volume={333},
 pages={339--350},
 numpages={12},
 doi={10.1016/j.neucom.2018.12.003},
 issn={0925-2312},
 publisher={Elsevier},
}
RIS
TY  - JOUR
AU  - Zhang, Lining
AU  - Shum, Hubert P. H.
AU  - Liu, Li
AU  - Guo, Guodong
AU  - Shao, Ling
T2  - Neurocomputing
TI  - Multiview Discriminative Marginal Metric Learning for Makeup Face Verification
PY  - 2019
VL  - 333
SP  - 339
EP  - 350
DO  - 10.1016/j.neucom.2018.12.003
SN  - 0925-2312
PB  - Elsevier
ER  - 
Paper
Manifold Regularized Experimental Design for Active Learning
Manifold Regularized Experimental Design for Active Learning REF 2021 Submitted OutputImpact Factor: 10.8Top 10% Journal in Computer Science, Artificial Intelligence
IEEE Transactions on Image Processing (TIP), 2017
Lining Zhang, Hubert P. H. Shum and Ling Shao
Webpage Cite This Plain Text
Lining Zhang, Hubert P. H. Shum and Ling Shao, "Manifold Regularized Experimental Design for Active Learning," IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 969-981, IEEE, Feb 2017.
Bibtex
@article{zhang17manifold,
 author={Zhang, Lining and Shum, Hubert P. H. and Shao, Ling},
 journal={IEEE Transactions on Image Processing},
 title={Manifold Regularized Experimental Design for Active Learning},
 year={2017},
 month={2},
 volume={26},
 number={2},
 pages={969--981},
 numpages={14},
 doi={10.1109/TIP.2016.2635440},
 issn={1057-7149},
 publisher={IEEE},
}
RIS
TY  - JOUR
AU  - Zhang, Lining
AU  - Shum, Hubert P. H.
AU  - Shao, Ling
T2  - IEEE Transactions on Image Processing
TI  - Manifold Regularized Experimental Design for Active Learning
PY  - 2017
Y1  - 2 2017
VL  - 26
IS  - 2
SP  - 969
EP  - 981
DO  - 10.1109/TIP.2016.2635440
SN  - 1057-7149
PB  - IEEE
ER  - 
Paper
Discriminative Semantic Subspace Analysis for Relevance Feedback
Discriminative Semantic Subspace Analysis for Relevance Feedback REF 2021 Submitted OutputImpact Factor: 10.8Top 10% Journal in Computer Science, Artificial IntelligenceCitation: 36#
IEEE Transactions on Image Processing (TIP), 2016
Lining Zhang, Hubert P. H. Shum and Ling Shao
Webpage Cite This Plain Text
Lining Zhang, Hubert P. H. Shum and Ling Shao, "Discriminative Semantic Subspace Analysis for Relevance Feedback," IEEE Transactions on Image Processing, vol. 25, no. 3, pp. 1275-1287, IEEE, Mar 2016.
Bibtex
@article{zhang16discriminative,
 author={Zhang, Lining and Shum, Hubert P. H. and Shao, Ling},
 journal={IEEE Transactions on Image Processing},
 title={Discriminative Semantic Subspace Analysis for Relevance Feedback},
 year={2016},
 month={3},
 volume={25},
 number={3},
 pages={1275--1287},
 numpages={13},
 doi={10.1109/TIP.2016.2516947},
 issn={1057-7149},
 publisher={IEEE},
}
RIS
TY  - JOUR
AU  - Zhang, Lining
AU  - Shum, Hubert P. H.
AU  - Shao, Ling
T2  - IEEE Transactions on Image Processing
TI  - Discriminative Semantic Subspace Analysis for Relevance Feedback
PY  - 2016
Y1  - 3 2016
VL  - 25
IS  - 3
SP  - 1275
EP  - 1287
DO  - 10.1109/TIP.2016.2516947
SN  - 1057-7149
PB  - IEEE
ER  - 
Paper
Arbitrary View Action Recognition via Transfer Dictionary Learning on Synthetic Training Data
Arbitrary View Action Recognition via Transfer Dictionary Learning on Synthetic Training Data H5-Index: 122#Core A* ConferenceCitation: 16#
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016
Jingtian Zhang, Lining Zhang, Hubert P. H. Shum and Ling Shao
Webpage Cite This Plain Text
Jingtian Zhang, Lining Zhang, Hubert P. H. Shum and Ling Shao, "Arbitrary View Action Recognition via Transfer Dictionary Learning on Synthetic Training Data," in ICRA '16: Proceedings of the 2016 IEEE International Conference on Robotics and Automation, pp. 1678-1684, Stockholm, Sweden, IEEE, May 2016.
Bibtex
@inproceedings{zhang16arbitrary,
 author={Zhang, Jingtian and Zhang, Lining and Shum, Hubert P. H. and Shao, Ling},
 booktitle={Proceedings of the 2016 IEEE International Conference on Robotics and Automation},
 series={ICRA '16},
 title={Arbitrary View Action Recognition via Transfer Dictionary Learning on Synthetic Training Data},
 year={2016},
 month={5},
 pages={1678--1684},
 numpages={8},
 doi={10.1109/ICRA.2016.7487309},
 publisher={IEEE},
 location={Stockholm, Sweden},
}
RIS
TY  - CONF
AU  - Zhang, Jingtian
AU  - Zhang, Lining
AU  - Shum, Hubert P. H.
AU  - Shao, Ling
T2  - Proceedings of the 2016 IEEE International Conference on Robotics and Automation
TI  - Arbitrary View Action Recognition via Transfer Dictionary Learning on Synthetic Training Data
PY  - 2016
Y1  - 5 2016
SP  - 1678
EP  - 1684
DO  - 10.1109/ICRA.2016.7487309
PB  - IEEE
ER  - 
Paper Dataset GitHub

Links

ResearchGate
ResearshGate
DBLP
DBLP

HomeGoogle ScholarYouTubeLinkedInTwitter/XGitHubORCIDResearchGateEmail
 
Print