Self-funded PhD Positions Available

Biomedical Engineering with Deep Learning based Video Analysis
Computer Vision with Deep Learning for Human Data Modelling
Deep Learning based Computer Graphics for Creating Virtual Characters

Unifying Person and Vehicle Re-identification

Unifying Person and Vehicle Re-identification


Person and vehicle re-identification (re-ID) are important challenges for the analysis of the burgeoning collection of urban surveillance videos. To efficiently evaluate such videos, which are populated with both vehicles and pedestrians, it would be preferable to have one unified framework with effective performance across both domains. Unfortunately, due to the contrasting composition of humans and vehicles, no architecture has yet been established that can adequately perform both tasks. We release a Person and Vehicle Unified Data Set (PVUD) comprising of both pedestrians and vehicles from popular existing re-ID data sets, in order to better model the data that we would expect to find in the real world. We exploit the generalisation ability of metric learning to propose a re-ID framework that can learn to re-identify humans and vehicles simultaneously. We design our network, MidTriNet, to harness the power of mid-level features to develop better representations for the re-ID tasks. We help the system to handle mixed data by appending unification terms with additional hard negative and hard positive mining to MidTriNet. We attain comparable accuracy training on PVUD to training on the comprising data sets separately, supporting the system’s generalisation power. To further demonstrate the effectiveness of our framework, we also obtain results better than, or competitive with, the state-of-the-art on each of the Market-1501, CUHK03, VehicleID and VeRi data sets.


Daniel Organisciak, Dimitrios Sakkos, Edmond S. L. Ho, Nauman Aslam and Hubert P. H. Shum,
"Unifying Person and Vehicle Re-identification",
IEEE Access
, 2020
Impact Factor: 3.476# Citation: 5##

# Impact factors from the Journal Citation Reports 2021
## Citation counts from Google Scholar as of 2022





 author={Organisciak, Daniel and Sakkos, Dimitrios and Ho, Edmond S. L. and Aslam, Nauman and Shum, Hubert P. H.},
 journal={IEEE Access},
 title={Unifying Person and Vehicle Re-identification},


AU  - Organisciak, Daniel
AU  - Sakkos, Dimitrios
AU  - Ho, Edmond S. L.
AU  - Aslam, Nauman
AU  - Shum, Hubert P. H.
T2  - IEEE Access
TI  - Unifying Person and Vehicle Re-identification
PY  - 2020
VL  - 8
SP  - 115673
EP  - 115684
DO  - 10.1109/ACCESS.2020.3004092
SN  - 2169-3536
ER  - 

Plain Text

Daniel Organisciak, Dimitrios Sakkos, Edmond S. L. Ho, Nauman Aslam and Hubert P. H. Shum, "Unifying Person and Vehicle Re-identification," IEEE Access, vol. 8, pp. 115673-115684, IEEE, 2020.

Similar Research



Last updated on 01 August 2022, RSS Feeds