UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery

Daniel Organisciak, Matthew Poyser, Aishah Alsehaim, Shanfeng Hu, Brian K. S. Isaac-Medina, Toby P. Breckon and Hubert P. H. Shum
Proceedings of the 2022 International Conference on Computer Vision Theory and Applications (VISAPP), 2022

UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery

Abstract

As unmanned aerial vehicles (UAV) become more accessible with a growing range of applications, the risk of UAV disruption increases. Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with a single camera. However, the limited field of view of a single camera necessitates multi-camera configurations to match UAVs across viewpoints -- a problem known as re-identification (Re-ID). While there has been extensive research on person and vehicle Re-ID to match objects across time and viewpoints, to the best of our knowledge, UAV Re-ID remains unresearched but challenging due to great differences in scale and pose. We propose the first UAV re-identification data set, UAV-reID, to facilitate the development of machine learning solutions in multi-camera environments. UAV-reID has two sub-challenges: Temporally-Near and Big-to-Small to evaluate Re-ID performance across viewpoints and scale respectively. We conduct a benchmark study by extensively evaluating different Re-ID deep learning based approaches and their variants, spanning both convolutional and transformer architectures. Under the optimal configuration, such approaches are sufficiently powerful to learn a well-performing representation for UAV (81.9% mAP for Temporally-Near, 46.5% for the more difficult Big-to-Small challenge), while vision transformers are the most robust to extreme variance of scale.


Downloads


YouTube


Cite This Research

Plain Text

Daniel Organisciak, Matthew Poyser, Aishah Alsehaim, Shanfeng Hu, Brian K. S. Isaac-Medina, Toby P. Breckon and Hubert P. H. Shum, "UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery," in VISAPP '22: Proceedings of the 2022 International Conference on Computer Vision Theory and Applications, pp. 136-146, SciTePress, Feb 2022.

BibTeX

@inproceedings{organisciak22uavreid,
 author={Organisciak, Daniel and Poyser, Matthew and Alsehaim, Aishah and Hu, Shanfeng and Isaac-Medina, Brian K. S. and Breckon, Toby P. and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2022 International Conference on Computer Vision Theory and Applications},
 series={VISAPP '22},
 title={UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery},
 year={2022},
 month={2},
 pages={136--146},
 numpages={11},
 doi={10.5220/0010836600003124},
 isbn={978-989-758-555-5},
 publisher={SciTePress},
}

RIS

TY  - CONF
AU  - Organisciak, Daniel
AU  - Poyser, Matthew
AU  - Alsehaim, Aishah
AU  - Hu, Shanfeng
AU  - Isaac-Medina, Brian K. S.
AU  - Breckon, Toby P.
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2022 International Conference on Computer Vision Theory and Applications
TI  - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery
PY  - 2022
Y1  - 2 2022
SP  - 136
EP  - 146
DO  - 10.5220/0010836600003124
SN  - 978-989-758-555-5
PB  - SciTePress
ER  - 


Supporting Grants

The Catapult Network (S-TRIG)
Tracking Drones Across Different Platforms with Machine Vision
Security Technology Research Innovation Grants Programme (S-TRIG) (Ref: 007CD): £32,727, Principal Investigator ()
Received from The Catapult Network (S-TRIG), UK, 2020-2021
Project Page
Northumbria University

Postgraduate Research Scholarship (Ref: ): £65,000, Principal Investigator ()
Received from Faculty of Engineering and Environment, Northumbria University, UK, 2018-2021
Project Page

Similar Research

Brian K. S. Isaac-Medina, Matthew Poyser, Daniel Organisciak, Chris G. Willcocks, Toby P. Breckon and Hubert P. H. Shum, "Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark", Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021
Daniel Organisciak, Dimitrios Sakkos, Edmond S. L. Ho, Nauman Aslam and Hubert P. H. Shum, "Unifying Person and Vehicle Re-Identification", IEEE Access, 2020
Daniel Organisciak, Chirine Riachy, Nauman Aslam and Hubert P. H. Shum, "Triplet Loss with Channel Attention for Person Re-Identification", Journal of WSCG - Proceedings of the 2019 International Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), 2019

 

RSS Feed