ViTE: Virtual Graph Trajectory Expert Router for Pedestrian Trajectory Prediction

Ruochen Li, Zhanxing Zhu, Tanqiu Qiao and Hubert P. H. Shum
Proceedings of the 2026 AAAI Conference on Artificial Intelligence (AAAI), 2026

H5-Index: 232#

ViTE: Virtual Graph Trajectory Expert Router for Pedestrian Trajectory Prediction
# According to Google Scholar 2025

Abstract


Downloads


YouTube


Cite This Research

Plain Text

Ruochen Li, Zhanxing Zhu, Tanqiu Qiao and Hubert P. H. Shum, "ViTE: Virtual Graph Trajectory Expert Router for Pedestrian Trajectory Prediction," in Proceedings of the 2026 AAAI Conference on Artificial Intelligence, 2026.

BibTeX

@inproceedings{li26vite,
 author={Li, Ruochen and Zhu, Zhanxing and Qiao, Tanqiu and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2026 AAAI Conference on Artificial Intelligence},
 title={ViTE: Virtual Graph Trajectory Expert Router for Pedestrian Trajectory Prediction},
 year={2026},
}

RIS

TY  - CONF
AU  - Li, Ruochen
AU  - Zhu, Zhanxing
AU  - Qiao, Tanqiu
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2026 AAAI Conference on Artificial Intelligence
TI  - ViTE: Virtual Graph Trajectory Expert Router for Pedestrian Trajectory Prediction
PY  - 2026
ER  - 


Supporting Grants


Similar Research

Ruochen Li, Tanqiu Qiao, Stamos Katsigiannis, Zhanxing Zhu and Hubert P. H. Shum, "Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction", IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2025
Ruochen Li, Stamos Katsigiannis, Tae-Kyun Kim and Hubert P. H. Shum, "BP-SGCN: Behavioral Pseudo-Label Informed Sparse Graph Convolution Network for Pedestrian and Heterogeneous Trajectory Prediction", IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2025
Qianhui Men and Hubert P. H. Shum, "PyTorch-Based Implementation of Label-Aware Graph Representation for Multi-Class Trajectory Prediction", Software Impacts (SIMPAC), 2021
Ben Rainbow, Qianhui Men and Hubert P. H. Shum, "Semantics-STGCNN: A Semantics-Guided Spatial-Temporal Graph Convolutional Network for Multi-Class Trajectory Prediction", Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021
Ruochen Li, Stamos Katsigiannis and Hubert P. H. Shum, "Multiclass-SGCN: Sparse Graph-Based Trajectory Prediction with Agent Class Embedding", Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), 2022

HomeGoogle ScholarYouTubeLinkedInTwitter/XGitHubORCIDResearchGateEmail
 
Print