Tanqiu Qiao

Durham University
PhD (Co-supervised with )
, 2021 - 2024

Durham University
, UK

Downloads


Grants Involved


Publications with the Team

Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction
Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction Impact Factor: 8.3Top 10% Journal in Engineering, Electrical & Electronic
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2025
Ruochen Li, Tanqiu Qiao, Stamos Katsigiannis, Zhanxing Zhu and Hubert P. H. Shum
Webpage Cite This Plain Text
Ruochen Li, Tanqiu Qiao, Stamos Katsigiannis, Zhanxing Zhu and Hubert P. H. Shum, "Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction," IEEE Transactions on Circuits and Systems for Video Technology, IEEE, 2025.
Bibtex
@article{li25unified,
 author={Li, Ruochen and Qiao, Tanqiu and Katsigiannis, Stamos and Zhu, Zhanxing and Shum, Hubert P. H.},
 journal={IEEE Transactions on Circuits and Systems for Video Technology},
 title={Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction},
 year={2025},
 doi={10.1109/TCSVT.2025.3539522},
 publisher={IEEE},
}
RIS
TY  - JOUR
AU  - Li, Ruochen
AU  - Qiao, Tanqiu
AU  - Katsigiannis, Stamos
AU  - Zhu, Zhanxing
AU  - Shum, Hubert P. H.
T2  - IEEE Transactions on Circuits and Systems for Video Technology
TI  - Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction
PY  - 2025
DO  - 10.1109/TCSVT.2025.3539522
PB  - IEEE
ER  - 
Paper GitHub
Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos
Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos Impact Factor: 7.5Top 25% Journal in Computer Science, Artificial Intelligence
Expert Systems with Applications (ESWA), 2025
Tanqiu Qiao, Ruochen Li, Frederick W. B. Li, Yoshiki Kubotani, Shigeo Morishima and Hubert P. H. Shum
Webpage Cite This Plain Text
Tanqiu Qiao, Ruochen Li, Frederick W. B. Li, Yoshiki Kubotani, Shigeo Morishima and Hubert P. H. Shum, "Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos," Expert Systems with Applications, pp. 128344, Elsevier, 2025.
Bibtex
@article{qiao25geometric,
 author={Qiao, Tanqiu and Li, Ruochen and Li, Frederick W. B. and Kubotani, Yoshiki and Morishima, Shigeo and Shum, Hubert P. H.},
 journal={Expert Systems with Applications},
 title={Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos},
 year={2025},
 pages={128344},
 doi={10.1016/j.eswa.2025.128344},
 issn={0957-4174},
 publisher={Elsevier},
}
RIS
TY  - JOUR
AU  - Qiao, Tanqiu
AU  - Li, Ruochen
AU  - Li, Frederick W. B.
AU  - Kubotani, Yoshiki
AU  - Morishima, Shigeo
AU  - Shum, Hubert P. H.
T2  - Expert Systems with Applications
TI  - Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos
PY  - 2025
SP  - 128344
EP  - 128344
DO  - 10.1016/j.eswa.2025.128344
SN  - 0957-4174
PB  - Elsevier
ER  - 
Paper
TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training
TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training H5-Index: 65#
Proceedings of the 2024 British Machine Vision Conference (BMVC), 2024
Li Li, Tanqiu Qiao, Hubert P. H. Shum and Toby P. Breckon
Webpage Cite This Plain Text
Li Li, Tanqiu Qiao, Hubert P. H. Shum and Toby P. Breckon, "TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training," in BMVC '24: Proceedings of the 2024 British Machine Vision Conference, Glasgow, UK, 2024.
Bibtex
@inproceedings{li24traildet,
 author={Li, Li and Qiao, Tanqiu and Shum, Hubert P. H. and Breckon, Toby P.},
 booktitle={Proceedings of the 2024 British Machine Vision Conference},
 series={BMVC '24},
 title={TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training},
 year={2024},
 location={Glasgow, UK},
}
RIS
TY  - CONF
AU  - Li, Li
AU  - Qiao, Tanqiu
AU  - Shum, Hubert P. H.
AU  - Breckon, Toby P.
T2  - Proceedings of the 2024 British Machine Vision Conference
TI  - TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training
PY  - 2024
ER  - 
Paper Supplementary Material
From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos
From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos H5-Index: 56#
Proceedings of the 2024 International Conference on Pattern Recognition (ICPR), 2024
Tanqiu Qiao, Ruochen Li, Frederick W. B. Li and Hubert P. H. Shum
Webpage Cite This Plain Text
Tanqiu Qiao, Ruochen Li, Frederick W. B. Li and Hubert P. H. Shum, "From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos," in ICPR '24: Proceedings of the 2024 International Conference on Pattern Recognition, Kolkata, India, 2024.
Bibtex
@inproceedings{qiao24from,
 author={Qiao, Tanqiu and Li, Ruochen and Li, Frederick W. B. and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2024 International Conference on Pattern Recognition},
 series={ICPR '24},
 title={From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos},
 year={2024},
 location={Kolkata, India},
}
RIS
TY  - CONF
AU  - Qiao, Tanqiu
AU  - Li, Ruochen
AU  - Li, Frederick W. B.
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2024 International Conference on Pattern Recognition
TI  - From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos
PY  - 2024
ER  - 
Paper Supplementary Material
Geometric Features Informed Multi-Person Human-Object Interaction Recognition in Videos
Geometric Features Informed Multi-Person Human-Object Interaction Recognition in Videos H5-Index: 206#Core A* ConferenceCitation: 18#
Proceedings of the 2022 European Conference on Computer Vision (ECCV), 2022
Tanqiu Qiao, Qianhui Men, Frederick W. B. Li, Yoshiki Kubotani, Shigeo Morishima and Hubert P. H. Shum
Webpage Cite This Plain Text
Tanqiu Qiao, Qianhui Men, Frederick W. B. Li, Yoshiki Kubotani, Shigeo Morishima and Hubert P. H. Shum, "Geometric Features Informed Multi-Person Human-Object Interaction Recognition in Videos," in ECCV '22: Proceedings of the 2022 European Conference on Computer Vision, pp. 474-491, Tel Aviv, Israel, Springer, Oct 2022.
Bibtex
@inproceedings{qiao22geometric,
 author={Qiao, Tanqiu and Men, Qianhui and Li, Frederick W. B. and Kubotani, Yoshiki and Morishima, Shigeo and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2022 European Conference on Computer Vision},
 series={ECCV '22},
 title={Geometric Features Informed Multi-Person Human-Object Interaction Recognition in Videos},
 year={2022},
 month={10},
 pages={474--491},
 numpages={18},
 doi={10.1007/978-3-031-19772-7_28},
 isbn={978-3-031-19772-7},
 publisher={Springer},
 location={Tel Aviv, Israel},
}
RIS
TY  - CONF
AU  - Qiao, Tanqiu
AU  - Men, Qianhui
AU  - Li, Frederick W. B.
AU  - Kubotani, Yoshiki
AU  - Morishima, Shigeo
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2022 European Conference on Computer Vision
TI  - Geometric Features Informed Multi-Person Human-Object Interaction Recognition in Videos
PY  - 2022
Y1  - 10 2022
SP  - 474
EP  - 491
DO  - 10.1007/978-3-031-19772-7_28
SN  - 978-3-031-19772-7
PB  - Springer
ER  - 
Paper Supplementary Material Dataset GitHub

Links

Webpage
Webpage

HomeGoogle ScholarYouTubeLinkedInTwitter/XGitHubORCIDResearchGateEmail
 
Print