Tracking Drones Across Different Platforms with Machine Vision
Security Technology Research Innovation Grants Programme (S-TRIG)

Security Technology Research Innovation Grants Programme (S-TRIG)
Funding Source: The Catapult Network (S-TRIG), UK
Reference Number: 007CD
Value: £32,727
2020 - 2021

About the Project

People

Organizations

YouTube

Publications

Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark
Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark  H5-Index: 66# Citation: 62#
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021
Brian K. S. Isaac-Medina, Matthew Poyser, Daniel Organisciak, Chris G. Willcocks, Toby P. Breckon and Hubert P. H. Shum
Webpage Paper GitHub Cite BibTeX Cite RIS Cite Plain Text
UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery
UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery
Proceedings of the 2022 International Conference on Computer Vision Theory and Applications (VISAPP), 2022
Daniel Organisciak, Matthew Poyser, Aishah Alsehaim, Shanfeng Hu, Brian K. S. Isaac-Medina, Toby P. Breckon and Hubert P. H. Shum
Webpage Paper GitHub Cite BibTeX Cite RIS Cite Plain Text

Links

 

 

Last updated on 5 June 2024
RSS Feed