Spatio-Temporal Manifold Learning for Human Motions via Long-Horizon Modeling

He Wang, Edmond S. L. Ho, Hubert P. H. Shum and Zhanxing Zhu
IEEE Transactions on Visualization and Computer Graphics (TVCG), 2021

Impact Factor: 5.226# Citation: 55## REF 2021 Submission

Spatio-Temporal Manifold Learning for Human Motions via Long-Horizon Modeling
# Impact factors from the Journal Citation Reports 2021
## Citation counts from Google Scholar as of 2022

Abstract

Data-driven modeling of human motions is ubiquitous in computer graphics and computer vision applications, such as synthesizing realistic motions or recognizing actions. Recent research has shown that such problems can be approached by learning a natural motion manifold using deep learning on a large amount data, to address the shortcomings of traditional data-driven approaches. However, previous deep learning methods can be sub-optimal for two reasons. First, the skeletal information has not been fully utilized for feature extraction. Unlike images, it is difficult to define spatial proximity in skeletal motions in the way that deep networks can be applied for feature extraction. Second, motion is time-series data with strong multi-modal temporal correlations between frames. On the one hand, a frame could be followed by several candidate frames leading to different motions; on the other hand, long-range dependencies exist where a number of frames in the beginning correlate to a number of frames later. Ineffective temporal modeling would either under-estimate the multi-modality and variance, resulting in featureless mean motion or over-estimate them resulting in jittery motions, which is a major source of visual artifacts. In this paper, we propose a new deep network to tackle these challenges by creating a natural motion manifold that is versatile for many applications. The network has a new spatial component for feature extraction. It is also equipped with a new batch prediction model that predicts a large number of frames at once, such that long-term temporally-based objective functions can be employed to correctly learn the motion multi-modality and variances. With our system, long-duration motions can be predicted/synthesized using an open-loop setup where the motion retains the dynamics accurately. It can also be used for denoising corrupted motions and synthesizing new motions with given control signals. We demonstrate that our system can create superior results comparing to existing work in multiple applications.

Downloads

YouTube

Citations

BibTeX

@article{wang21spatiotemporal,
 author={Wang, He and Ho, Edmond S. L. and Shum, Hubert P. H. and Zhu, Zhanxing},
 journal={IEEE Transactions on Visualization and Computer Graphics},
 title={Spatio-Temporal Manifold Learning for Human Motions via Long-Horizon Modeling},
 year={2021},
 volume={27},
 number={1},
 pages={216--227},
 numpages={12},
 doi={10.1109/TVCG.2019.2936810},
 publisher={IEEE},
}

RIS

TY  - JOUR
AU  - Wang, He
AU  - Ho, Edmond S. L.
AU  - Shum, Hubert P. H.
AU  - Zhu, Zhanxing
T2  - IEEE Transactions on Visualization and Computer Graphics
TI  - Spatio-Temporal Manifold Learning for Human Motions via Long-Horizon Modeling
PY  - 2021
VL  - 27
IS  - 1
SP  - 216
EP  - 227
DO  - 10.1109/TVCG.2019.2936810
PB  - IEEE
ER  - 

Plain Text

He Wang, Edmond S. L. Ho, Hubert P. H. Shum and Zhanxing Zhu, "Spatio-Temporal Manifold Learning for Human Motions via Long-Horizon Modeling," IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 1, pp. 216-227, IEEE, 2021.

Supporting Grants

Similar Research

Edmund J. C. Findlay, Haozheng Zhang, Ziyi Chang and Hubert P. H. Shum, "Denoising Diffusion Probabilistic Models for Styled Walking Synthesis", Proceedings of the 2022 International Conference on Motion, Interaction and Games (MIG) Posters, 2022
Edmond S. L. Ho, Hubert P. H. Shum, He Wang and Li Yi, "Synthesizing Motion with Relative Emotion Strength", Proceedings of the 2017 ACM SIGGRAPH Asia Workshop on Data-Driven Animation Techniques (D2AT), 2017
Hubert P. H. Shum, Ludovic Hoyet, Edmond S. L. Ho, Taku Komura and Franck Multon, "Natural Preparation Behavior Synthesis", Computer Animation and Virtual Worlds (CAVW), 2013
Qianhui Men, Edmond S. L. Ho, Hubert P. H. Shum and Howard Leung, "A Quadruple Diffusion Convolutional Recurrent Network for Human Motion Prediction", IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2021
Hubert P. H. Shum, Ludovic Hoyet, Edmond S. L. Ho, Taku Komura and Franck Multon, "Preparation Behaviour Synthesis with Reinforcement Learning", Proceedings of the 2013 International Conference on Computer Animation and Social Agents (CASA), 2013
Hubert P. H. Shum, Taku Komura and Pranjul Yadav, "Angular Momentum Guided Motion Concatenation", Computer Animation and Virtual Worlds (CAVW) - Proceedings of the 2009 International Conference on Computer Animation and Social Agents (CASA), 2009
Qianhui Men, Hubert P. H. Shum, Edmond S. L. Ho and Howard Leung, "GAN-Based Reactive Motion Synthesis with Class-Aware Discriminators for Human-Human Interaction", Computers and Graphics (C&G), 2022
Ziyi Chang, Edmund J. C. Findlay, Haozheng Zhang and Hubert P. H. Shum, "Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models", Proceedings of the 2023 International Conference on Computer Graphics Theory and Applications (GRAPP), 2023
Edmond S. L. Ho, Hubert P. H. Shum, Yiu-ming Cheung and P. C. Yuen, "Topology Aware Data-Driven Inverse Kinematics", Computer Graphics Forum (CGF) - Proceedings of the 2013 Pacific Conference on Computer Graphics and Applications (PG), 2013
Jacky C. P. Chan, Hubert P. H. Shum, He Wang, Li Yi, Wei Wei and Edmond S. L. Ho, "A Generic Framework for Editing and Synthesizing Multimodal Data with Relative Emotion Strength", Computer Animation and Virtual Worlds (CAVW), 2019
Hubert P. H. Shum, Taku Komura and Shuntaro Yamazaki, "Simulating Competitive Interactions using Singly Captured Motions", Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology (VRST), 2007
Liuyang Zhou, Lifeng Shang, Hubert P. H. Shum and Howard Leung, "Human Motion Variation Synthesis with Multivariate Gaussian Processes", Computer Animation and Virtual Worlds (CAVW) - Proceedings of the 2014 International Conference on Computer Animation and Social Agents (CASA), 2014

 

 

Last updated on 20 May 2023
RSS Feed